scholarly journals Evaluation of Novel co-processed excipient for fast disintegration of aspirin tablet formulations

2021 ◽  
Vol 18 (1) ◽  
pp. 1-11
Author(s):  
Olubunmi J. Olayemi ◽  
Sophie Nock-Anyebe

Co-processing is a technique that ensures sub-particulate interaction of individual excipients leading to overall functionality of the resulting excipient. The aim of this study is to co-process Cyperus esculentus starch with mannitol by fusion and evaluate its effect on tablet disintegration and in vitro dissolution. Co-processed excipients were prepared from Cyperus esculentus starch and mannitol by fusion in ratios of 1:1, 1:2 and 2:1 (CM1, CM2, and CM3 respectively) and evaluated for flow and swelling properties. The excipients were incorporated into Aspirin tablet formulations at 5 %w/w by direct compression (FM1, FM2, FM3 respectively). Similar tablets were prepared using sodium starch glycolate (FSG) and the formulations were assessed for hardness, friability, wetting time, disintegrationtime and in vitro dissolution profile. All the prepared excipients possessed excellent flow with Carr’s index between 17.31 and 20.78 and Hausner ratio between 1.21 and 1.26. CM3 had the highest swelling profile (1.491) while CM2 had the lowest (1.321). Formulation FM1 had the highest tensile strength (14.12 N/cm2 ) but slower wetting time (34.33 sec) compared to FM3 with tensile strength of 11.32 N/cm2 and wetting time of 9.00 sec. Disintegration time of CM3 (4.26 min) was comparable to that of FSG (4.01 min); their dissolution profile was also found to be similar. Coprocessing Cyperus esculentus starch and mannitol by fusion (2:1) influenced tablet  disintegration and in vitro dissolution and has potential to be used in manufacture of fast dissolving tablet formulations. Keywords: Co-processing; Cyperus esculentus starch; Mannitol; Disintegration; Dissolution

2020 ◽  
Vol 13 (5) ◽  
pp. 100
Author(s):  
Blasco Alejandro ◽  
Torrado Guillermo ◽  
Peña M Ángeles

This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies.


2021 ◽  
Vol 12 (1) ◽  
pp. 487-496
Author(s):  
Gayathri R ◽  
Benedict Jose C ◽  
Ramkanth S ◽  
Pradheesh Mohan S ◽  
Swetha V ◽  
...  

The present research dealt with the extraction and characterization of mucilage from the Hibiscus sabdariffa leaves. Compared with normal binding agents such as starch and Poly Vinyl Pyrrolidine (PVP), the mucilage of Hibiscus sabdariffa (HSM) was assessed for its binding properties in tablet formulations. Tablets were formulated using HSM, starch and PVP as binders at a various concentration to evaluate its comparative binding efficiency. The compressed tablets were analyze for their quality control tests as per IP. The extracted HSM showed the characteristics of mucilage and good physicochemical properties. The FTIR and thermal analysis compatibility tests showed that there were no significant reactions between the drug and mucilage. Granule properties of various formulations were found to be comparable and have excellent flow characteristics. Post compression parameters suggested that tablets formulated with mucilage had better hardness and friability as that of the tablets prepared with starch and PVP. The formulations exhibited a better and more consistent release as compared to standard formulations using starch and PVP as a binder. The statistical analysis of in vitro dissolution profile by using DD solver software for difference factor (f1), similarity factor (f2), and Rescigno index (ξ) values also indicated promising results. The results notably indicate that binding property of HSM was at par with starch and PVP.


Author(s):  
Arul Kumaran KSG ◽  
Palanisamy S ◽  
Rajasekaran A ◽  
Ahil Hari

The purpose of the study was to evaluate cassia roxburghii seed gum powder as binder for paracetamol and diclofenac sodium. Granules of both drugs were prepared by wet granulation method. Two different laboratory developed methods were tried for the isolation of seed mucilage from seed powder. The phytochemical, physico-chemical and microbiological properties were performed on the seed gum and the pre-compression parameters like bulk density, tapped density, angle of repose, carr’s index and hausner’s ratio have shown that paracetamol and diclofenac granules prepared using Cassia roxburghii gum were well within the limits and comparable to those prepared using standard starch paste as binder. The in vitro dissolution study was performed for paracetamol formulations with sodium starch glycolate and the dissolution profile shows all the three formulations met with official specifications. The in vitro dissolution profile shows that drug release decreased in the order, tablets prepared by starch>c.roxburghii defatted>c.roxburghii filtered in both paracetamol and diclofenac formulations. The drug release from tablets prepared by C.roxburghii seed gum was more than 85% in 2 hours and filtered C.roxburghii gum has excellent mechanical, binding and release properties in paracetamol tablet formulations with the addition of sodium starch glycolate as an external disintegrant


1970 ◽  
Vol 3 (1) ◽  
pp. 1-3
Author(s):  
Tajnin Ahmed ◽  
Afia Ferdous ◽  
Subrata Kumar Biswas ◽  
Farhana Sharif

The objective of this work is to find out brand-to-brand variation by applying profile comparison approaches to the dissolution data of marketed aceclofenac tablet formulations. Commercially available five brands of aceclofenac tablets were studied in simulated intestinal medium (pH 6.8) for 60 minutes time period using USP reference dissolution apparatus. Four samples complied with the USP in vitro dissolution specifications for drug release (not less than 80% of the labeled amount of Aceclofenac should be dissolved in 60 minutes). One brand (Code: S1) failed to meet the criteria; drug release was 66.85% within the specified time period. Key words: Bangladesh; In vitro dissolution; market preparations; aceclofenac; tablet. DOI: 10.3329/sjps.v3i1.6790S. J. Pharm. Sci. 3(1): 1-3


2021 ◽  
Vol 11 (3-S) ◽  
pp. 1-6
Author(s):  
Nusrat Ahmed ◽  
Jesmin Akter ◽  
Sabrina Rahman Archie

Since orally disintegrating tablets (ODTs) of tramadol hydrochloride are not available in the market, so an attempt has been taken to formulate and evaluate ODT preparation of tramadol hydrochloride. In this present work, direct compression was the technique used for preparing ODT using superdisintegrants like croscarmellose sodium, sodium starch glycolate and crospovidone at different concentrations. Prepared formulations were evaluated for various quality parameters- angle of repose, Carr’s index, Hausner ratio, weight variation, friability, hardness, drug content, dispersion time, wetting time and in-vitro dissolution. The angle of repose data indicated that the flow property of all the formulations was good to excellent. Comparing with the specifications, the results of Carr's index (%) and Hausner’s ratio indicated that the flowability of all the formulations blend was significantly good. Prepared formulations showed average wetting time ranging from 40-45 seconds, average dispersion time with 3-6 minutes. In-vitro dissolution profile indicated the cumulative % drug release between 30-80% for most of the cases. Keywords: Orally disintegrating tablets, Tramadol hydrochloride, Superdisintegrants, Direct compression.


Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Purwantiningsih Sugita ◽  
Bambang Srijanto ◽  
Budi Arifin ◽  
Fithri Amelia ◽  
Mahdi Mubarok

Chitosan, a modification of shrimp-shell waste, has been utilized as microcapsule. However, it’s fragile gel property needs to be strengthened by adding glutaraldehyde (glu) and natural hydrocolloid guar gum (gg). This research’s purposes were to study dissolution behaviour of ketoprofen and infar through optimum chitosan-guar gum microcapsule. Into 228.6 mL of 1.75% (w/v) chitosan solution in 1% (v/v) acetic acid,38.1 mL of gg solution was added with concentration variation of 0.35, 0.55, and 0.75% (w/v) for ketoprofen microcapsules and 0.05, 0.19, and 0.33% (w/v) for infar microcapsules, and stirred with magnetic stirrer until homogenous. Afterwards, 7.62mL of glu was added slowly under stirring, with concentrations varied: 3, 3.5, and 4% (v/v) for ketoprofen microcapsules, and 4, 4.5, and 5% (v/v) for infar microcapsules. All mixtures were shaked for 20 minutes for homogenization. All mixtures wereshaked for 20 minutes for homogenization. Into each  microcapsule mixture for ketoprofen, a solution of 2 g of ketoprofen in 250 mL of 96% ethanol was added, whereas solution of 100 mg of in 250 mL of 96% ethanol was added into each microcapsule mixture for infar. Every mixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Everymixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Conversion of suspension into fine powders/granules (microcapsules) was done by using spray dryer. The data of [gg], [glu], and medicine’s content from each microcapsule were treated with Minitab 14 software to obtain optimum [gg] and [glu] for microencapsulation. The dissolution behaviour of optimum ketoprofen and infar microcapsules were investigated. The result of optimization by using Minitab Release 14 software showed that among the microcapsule compositions of [gg] and [glu] were 0.35% (w/v) and 3.75% (v/v), respectively, optimum to coat ketoprofen, whereas [gg] and [glu] of 0.05% (w/v) and4.00% (v/v), respectively, optimum to coat infar, at constant chitosan concentration (1.75% [w/v]). In vitro dissolution profile showed that chitosan-guar gum gel microcapsule was more resistant in intestinal pH condition (rather basic) compared with that in gastric pH (very acidic).


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


Sign in / Sign up

Export Citation Format

Share Document