Physicochemical Characterization of Sus scrofa domesticus Fat and a Preliminary Evaluation of its Potential as a Matrix Former in Ibuprofen Granules

2020 ◽  
Vol 16 (1) ◽  
pp. 49-60
Author(s):  
C.O. Uzochukwu ◽  
S.O. Eraga ◽  
F.E. Eichie

Background: There is an increasing interest and search for local and natural sources as active pharmaceutical excipients.Purpose: The study aimed at investigating the physicochemical characteristics of Sus scrofa domesticus (SSD) fat and its potential as a matrix former in ibuprofen granule formulations.Methods: SSD fat was extracted from the domestic pig by wet rendering and purified. The fat was characterized for its organoleptic and physicochemical properties and used in the formulation of batches of ibuprofen granules by melt granulation using varying concentrations (5.0-15%w/w). Conventional granules were formed with maize starch (15%w/w) for control. Formulated granules were evaluated for flow properties, encapsulated in hard gelatin capsules and subjected to in-vitro drug release studies.Results: SSD fat was snow white in colour. Soluble in organic solvents but insoluble in water. pH of the fat was 7.4, viscosity (147.4 millipascal), peroxide value (11.0 meq/kg), acid value (3.4) and saponification value (196.3). Granules formulated with SSD fat exhibited poor flowability and their dissolution profiles showed retardation in ibuprofen release with increase in fat concentrations. Granules formulated with 5.0 and 10%w/w of the fat exhibited 43 and 27% ibuprofen release within 4 h while the conventional granules showed a drug release of 98% within 1.0 h.Conclusion: The physicochemical properties of SSD fat was found to possess favourable potential properties relevant in the formulation of a drug delivery system. The retardation of ibuprofen release from the granules showed that SSD fat has a potential application as a matrix former in controlled release formulation. Keywords: Sus scrofa domesticus, ibuprofen, matrix granules, dissolution profiles

Author(s):  
Niketa Chauhan ◽  
Nilay Lakhkar ◽  
Amol Chaudhari

AbstractThe process of bone regeneration in bone grafting procedures is greatly influenced by the physicochemical properties of the bone graft substitute. In this study, porous phosphate glass (PPG) morsels were developed and their physicochemical properties such as degradation, crystallinity, organic content, surface topography, particle size and porosity were evaluated using various analytical methods. The in vitro cytotoxicity of the PPG morsels was assessed and the interaction of the PPG morsels with Dental Pulp Stem Cells (DPSCs) was studied by measuring cell proliferation and cell penetration depth. The cell-material interactions between PPG morsels and a commercially available xenograft (XG) were compared. The PPG morsels were observed to be amorphous, biocompatible and highly porous (porosity = 58.45%). From in vitro experiments, PPG morsels were observed to be non-cytotoxic and showed better cell proliferation. The internal surface of PPG was easily accessible to the cells compared to XG.


2009 ◽  
Vol 59 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pramod Kumar ◽  
Sanjay Singh ◽  
Brahmeshwar Mishra

Development and biopharmaceutical evaluation of extended release formulation of tramadol hydrochloride based on osmotic technologyExtended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve it. Formulation variables such as the level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media.In vivostudy was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax,tmax,AUC0-24,MRT) and relative bioavailability were calculated. Thein vitroandin vivoresults were compared with the performance of two commercial TRH tablets. The developed formulation provided more prolonged and controlled TRH release compared to the marketed formulation.In vitro-in vivocorrelation (IVIVC) was analyzed according to the Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R= 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable over 6 months of accelerated stability testing.


2017 ◽  
Vol 531 (1) ◽  
pp. 306-312 ◽  
Author(s):  
Chan-Jung Li ◽  
Mei-Yun Ku ◽  
Chia-Yin Lu ◽  
Yu-En Tien ◽  
Wendy H. Chern ◽  
...  

1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


2019 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Khosro Adibkia ◽  
Solmaz Ghajar ◽  
Karim Osouli-Bostanabad ◽  
Niloufar Balaei ◽  
Shahram Emami ◽  
...  

Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.


1998 ◽  
Vol 1998 ◽  
pp. 178-178
Author(s):  
N.S. Prathalingam ◽  
K. Rust ◽  
M.E. Staines ◽  
G.J. McCallum ◽  
S.A. Edwards ◽  
...  

In vitro embryo production strategies have been considered as possible means to protect wild and endangered animal species through assisted breeding programmes. They also offer the possibility to preserve genetic material from such stock or to facilitate breeding in captivity. The relevant technologies, however, have been developed to meet the needs of oocytes and embryos of domesticated animals and their suitability for wild species remains largely unknown. This study investigated the ability of in vitro maturation procedures, designed for oocytes of domestic pigs (Sus scrofa domesticus), to support the development of oocytes from wild boar (Sus scrofa)gilts.


2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Emma Gabriela Antonio Marcos ◽  
O. Monroy Hermosillo ◽  
E. Cortés Barberena ◽  
E. Rodríguez Tobón ◽  
J. G. Rivera Martínez ◽  
...  

C-phycocyanin (C-PC) is a biocompound extracted from Arthrospira maxima. It is a chromophore-protein complex, with antioxidant properties. Its ability to prevent oxidative stress allows for diverse medical applications. This study evaluates the use of C-PC as a protein supplement and an antioxidant for in-vitro sperm preservation in a short-term extender. Viability, progressive motility, DNA damage and percentage of reactive oxygen species where assessed in Swine (Sus scrofa domesticus) sperm stored for up to 72 hours at 4 °C. Treatments with C-PC had the following concentrations: 0, 34.5, 69, 138 and 207 μg mL−1. Progressive motility and percentage of sperm with undamaged DNA were unchanged (20%) after storage for 48 hours using the 138 μg mL C-PC concentration−1.


2013 ◽  
Vol 747 ◽  
pp. 103-106 ◽  
Author(s):  
Prapaporn Boonme ◽  
Hasleena Boontawee ◽  
Wirach Taweepreda ◽  
Wiwat Pichayakorn

The mucous liquid of Hevea brasiliensis or Para rubber tree, called natural rubber latex (NRL), composes of cis-1,4-polyisoprene which can form a patch under suitable formulation. In this study, blank and 5% lidocaine-loaded NRL patches were formulated and then characterized for physicochemical properties as well as evaluated in vitro drug release and stability. The patches were observed for their appearances. Surface morphology of the patches was investigated using a SEM. XRD was employed to study the crystallinity of the drug, the patch, and the drug-loaded patch. The extractions of lidocaine-loaded patches were analyzed for drug contents by HPLC. In vitro drug release study was performed using modified Franz diffusion cells. The patches at initial preparation and after kept at 4, 25, and 45 °C for 3 months were investigated for the stability determination. The results suggested that NRL could be used as a main component in pharmaceutical transdermal patches with acceptable physicochemical properties. Lidocaine-loaded NRL patches provided desirable drug release but high storage temperatures could age the patches resulting in darken color and lower release amount.


2011 ◽  
Vol 311-313 ◽  
pp. 1751-1754
Author(s):  
Gui Yu Li ◽  
Xi Hong Lu ◽  
Xue Hu Li ◽  
Lei Tao ◽  
Jian Ping Liang

Drug was encapsulated in a novel copolymers of poly(lactic-co-glycolic acid) (PLGA) to investigate the sustained-release formulation of drug loaded polymer microspheres delivery system. Used a modified solid-in-oil-in-water (S/O/W) emulsion solvent evaporation method to prepare microspheres, its morphology and particle size distribution were estimated by scanning electron microscopy (SEM), the profile of in vitro drug release were assessed by High performance liquid chromatography (HPLC). Finally, an stable release buffer was utilized to obtain a detailed drug release profile, which was analyzed by HPLC also. Results showed that the microspheres morphology, encapsulation efficiency and the cumulative drug release efficiency were appropriate for veterinary medicine using. The modified preparation method was simple and optimized, PLGA microspheres with excellent controlled-release characteristics may serve as drug delivery carrier and may prolong the drug sustained-release effect.


2018 ◽  
Vol 9 (4) ◽  
pp. 107
Author(s):  
R Poonguzhali ◽  
S Khaleel Basha ◽  
V Sugantha Kumari

<p>In this study Ampicillin drug loaded with alginate and nanocellulose film was prepared by solution casting method. Nanocellulose and ampicillin incorporated into alginate to improve both mechanical and swelling property. The formulated ampicillin loaded Alg/NC film gave acceptable physicochemical properties compared with Alg-amp film and was able to deliver the drug in a prolonged release pattern. <em>In vitro</em> drug release showed that alginate, could provide an immediate release of ampicillin with further enhanced nanocellulose, and followed by a sustained release over 500 min of the remaining drug. The present study exhibited a simple and useful approach to systematically design for providing drug release profiles.</p>


Sign in / Sign up

Export Citation Format

Share Document