scholarly journals INFLUENCE OF SUPERPLASTICIZER AND VARYING AGGREGATE SIZE ON THE DRYING SHRINKAGE AND COMPRESSIVE STRENGTH OF LATERISED CONCRETE

2017 ◽  
Vol 36 (3) ◽  
pp. 734-739
Author(s):  
F Falade ◽  
B Ukponu ◽  
OJ Ugbaja

This paper presents the results of the study on the influence of superplasticizer and varying aggregate size on the drying shrinkage and compressive strength of laterised concrete. Four different samples of laterised concrete were made from prescribed mix ratio of 1:1:2 which include; two control specimens made with different coarse aggregate sizes (12.5mm and 19mm) and another two specimens that have the same composition as the control samples with addition of superplasticizer (Conplast 430). The compressive strength and drying shrinkage were determined at the curing periods (7, 14, 21 and 28 days). The results showed that specimens made with 12.5mm diameter coarse aggregate and superplasticizer developed a maximum compressive strength (44N/mm2) at 28th day. This maximum compressive strength was 29.6%, 31.8% and 4.6% greater than the compressive strength developed by the control specimens and specimens made with 19mm diameter coarse aggregate and superplasticizer. Specimens made with 19mm diameter coarse aggregate and superplasticizer developed the minimum shrinkage strain (1.48⨯0-3) at 90th day. This value was 17%, 13.5% and 8.1% less than shrinkage strain of the control specimens and specimen made with 12.5mm coarse aggregate size and superplasticizer. The addition of superplasticizer increased the compressive strength and reduced the shrinkage strain of all specimens; while increase in coarse aggregate size reduced both compressive strength and drying shrinkage.  http://dx.doi.org/10.4314/njt.v36i3.11

2006 ◽  
Vol 33 (2) ◽  
pp. 206-213 ◽  
Author(s):  
Peter J Tumidajski ◽  
B Gong

The properties of concrete were studied when the proportions of 37.5 and 19.5 mm stone in the coarse aggregate were varied. With the cement content of 160 kg/m3 and the ratio of water/cement (w/c) greater than 0.9, the compressive strength is maximum at 25 percent by weight (w/o) of 37.5 mm stone. Conversely, for the cement content of 350 kg/m3 and w/c ratios of less than 0.50, maximum compressive strength is substantively reduced. For both 160 kg/m3 and 350 kg/m3 cement contents, workability improves slightly as the proportion of the 37.5 mm stone is increased. For 100 mm fixed slumps and cement content of less than 160 kg/m3, there was little change in compressive strength as the proportion of 37.5 mm stone increased. However, when cement content was increased from 190 to 350 kg/m3, maximum compressive strength was observed, which shifted downward from 50 w/o to 25 w/o of 37.5 mm stone. In general, to maintain a 100 mm slump, water demand decreased as the proportion of 37.5 mm stone in the coarse aggregate fraction increased.Key words: concrete, compressive strength, workability, slump, aggregate, size, cement.


2021 ◽  
Vol 11 (9) ◽  
pp. 3866
Author(s):  
Jun-Ryeol Park ◽  
Hye-Jin Lee ◽  
Keun-Hyeok Yang ◽  
Jung-Keun Kook ◽  
Sanghee Kim

This study aims to predict the compressive strength of concrete using a machine-learning algorithm with linear regression analysis and to evaluate its accuracy. The open-source software library TensorFlow was used to develop the machine-learning algorithm. In the machine-earning algorithm, a total of seven variables were set: water, cement, fly ash, blast furnace slag, sand, coarse aggregate, and coarse aggregate size. A total of 4297 concrete mixtures with measured compressive strengths were employed to train and testing the machine-learning algorithm. Of these, 70% were used for training, and 30% were utilized for verification. For verification, the research was conducted by classifying the mixtures into three cases: the case where the machine-learning algorithm was trained using all the data (Case-1), the case where the machine-learning algorithm was trained while maintaining the same number of training dataset for each strength range (Case-2), and the case where the machine-learning algorithm was trained after making the subcase of each strength range (Case-3). The results indicated that the error percentages of Case-1 and Case-2 did not differ significantly. The error percentage of Case-3 was far smaller than those of Case-1 and Case-2. Therefore, it was concluded that the range of training dataset of the concrete compressive strength is as important as the amount of training dataset for accurately predicting the concrete compressive strength using the machine-learning algorithm.


2010 ◽  
Vol 152-153 ◽  
pp. 1176-1179 ◽  
Author(s):  
Feng Lan Li ◽  
Qian Zhu

To improve the application of the new proto-machine-made sand in structural engineering, tests are carried out to study the drying shrinkage of concrete affected by stone powder in proto- machine-made sand. The target cubic compressive strength of concrete is 55 MPa, the main factor varied in mix proportion of concrete is the contents of stone powder by mass of proto-machine-made sand from 3 % to 16 %. The drying shrinkage strains of concrete are measured by the standard method at the ages of 1 d, 3 d, 7 d, 14 d, 28 d, 60 d, 90 d, 120 d, 150 d and 180 d. Based on test results, the drying shrinkage of concrete affected by the contents of stone powder in proto-machine-made sand is analyzed and compared with that of similar test of concrete with traditional machine-made sand, which shows that there is the optimum content of stone powder resulting in the lower drying shrinkage of concrete. The formula for predicting drying shrinkage strain of concrete is proposed.


2012 ◽  
Vol 2 (1) ◽  
pp. 21-28
Author(s):  
R. G. Solís ◽  
E. Moreno ◽  
E. Arjona

RESUMENLa resistencia del concreto depende de la calidad de la pasta de cemento y de las características de los agregados pétreos. La primera es controlada por la relación agua - cemento, mientras que las propiedades de los agregados generalmente no pueden ser manipuladas ya que se suele utilizar aquellos que están disponibles cerca de la construcción. En muchas regiones rocas con propiedades no deseables son utilizadas como agregado. Por lo tanto, el objetivo de este trabajo fue responder a la pregunta sobre cuál sería la máxima resistencia de diseño que se podría utilizar para concretos fabricados con un tipo específico de agregados obtenidos a partir de la trituración de roca caliza de alta absorción. Se probaron concretos con seis relaciones agua - cemento y dos tamaños de agregado grueso. Se concluyó que con los agregados estudiados es posible fabricar concretos de hasta 500 k/cm2 de f’c.Palabras clave: Absorción; agregados calizos; concreto; relación agua/cemento; resistencia.ABSTRACTConcrete strength depends on the cement paste quality and on the characteristics of the aggregates. The former is controlled by the water to cement ratio, while the properties of the aggregate, in general, cannot be manipulated as it is customary to employ the ones available near the construction site. In many regions rocks with no desirable properties are employed as aggregates. Therefore, the aim of this study was to answer the question about what would that be the maximum compressive strength attainable in concrete made with a specific type of aggregate obtained from crushed limestone of high absorption. Concrete mixtures involved six water to cement ratios and two sizes of coarse aggregate. It was concluded that with this type of aggregate it is possible to made concrete with compressive strength up to 500 k/cm2 of f’c.Key words: Absorption; compressive strength; concrete; limestone aggregate; water/cement ratio.


Author(s):  
Lawrence Echefulechukwu Obi

This work was necessitated by the observations made at construction sites where artisans and craftsmen were left alone in concrete production. It was discovered that they used inadequate quantity and size of coarse aggregates due to difficulty associated in the mixing as if the coarse aggregates were not needed in concrete production. The research has established that the coarse aggregates and their sizes play critical roles in the development of adequate strength in concrete. It was observed that with proper mixing, the slump test results did not witness shear or collapse type of slump rather there were true slump in all cases of the test. The workability decreased with slight differences when the coarse aggregate size was increased. The increase in the coarse aggregates yielded appreciable increase in the compressive strength. It can therefore be inferred that the quality of concrete in terms of strength can be enhanced through an increase in the coarse aggregate size when proper mix ratio, batching, mixing, transporting, placing and finishings are employed in concrete productions.


2020 ◽  
Vol 10 (15) ◽  
pp. 5207
Author(s):  
Chamila Gunasekara ◽  
Charitha Seneviratne ◽  
David W. Law ◽  
Sujeeva Setunge

Quarry aggregate reserves are depleting rapidly within Australia and the rest of the world due to an increasing demand for aggregates driven by expansion in construction. The annual production of premix concrete in Australia is approximately 30 million cubic meters, while 3–5% of concrete delivered to site remains unused and is disposed of in landfill or crushing plants. The production of coarse aggregates using this waste concrete is potentially a sustainable approach to reduce environmental and economic impact. A testing program has been conducted to investigate mechanical performance and permeation characteristics of concrete produced using a novel manufactured coarse aggregate recycled directly from fresh premix concrete. The recycled coarse aggregate (RCA) concrete satisfied the specified 28-day design strength of 25 MPa and 40 MPa at 28 days and a mean compressive strength of 60 MPa at 90 days. Aggregate grading was observed to determine strength development, while low water absorption, low drying shrinkage, and higher packing density indicate that the RCA concrete is a high-quality material with a dense pore structure. The rough fracture surface of the aggregate increased the bond between C-S-H gel matrix and RCA at the interfacial transition zone. Furthermore, a good correlation was observed between compressive strength and all other mechanical properties displayed by the quarried aggregate concrete. The application of design equations as stated in Australian standards were observed to provide a conservative design for RCA concrete structures based on the mechanical properties.


2014 ◽  
Vol 911 ◽  
pp. 433-437 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md Nor Hasanan ◽  
P.J. Ramadhansyah

Properties of Porous Concrete Paving Blocks (PCPB) were investigated in this study. Two groups of coarse aggregate sizes were performed; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. For mixture design, 100 % of coarse aggregate were used. However, fine aggregate was eliminated in this investigation. The density, water absorption, flakiness index and elongation index test were performed to determine the properties of the coarse aggregate used in this study. Compression test and skid resistance test were used to evaluate the performance of PCPB. The results show that PCPB containing coarse aggregate size 5 8 mm give high compressive strength compared to others PCPB specimen. In addition, both PCPB specimens give an in increasing in skid resistance approximately 30 % compared to Concrete Paving Blocks (CPB).


2014 ◽  
Vol 61 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Alaa M. Rashad ◽  
Hosam.El Din H. Seleem

Abstract This paper presents the results of an investigation to assess the validity of producing high strength concrete (HSC) using moderate cement content to reduce the consumption of the binders. Cement content is lowered from 500 kg/m3 to 400 kg/m3. The difference in cement content is compensated by the addition of fine limestone (LS) powder. Pozzolans were incorporated as an addition to cement. Different coarse aggregate types were employed. Workability, compressive strength, tensile strength, permeability and drying shrinkage were measured. Test results revealed that HSC with a compressive strength up to 79 MPa (at 90 days age) could be produced with moderate cement content. The mixtures consistency and drying shrinkage are greatly enhanced due to employing LS powder and the permeability is satisfactory. To provide better solution to some concrete disadvantages like cracking and drying shrinkage, using an economic rate for cement are believed to reduce these disadvantages.


2018 ◽  
Vol 24 (2) ◽  
Author(s):  
CHIOMA TEMITOPE GLORIA AWODIJI ◽  
CHINEDU PAUL EZEGO ◽  
DAVIS OGBONNA ONWUKA ◽  
STANLEY EMEKA IWUOHA

<p>This study was carried out in order to ascertain if the Okigwe red lump stone, found in South-eastern Nigeria, could be used as coarse aggregate in making structural concrete. The maximum compressive strength values, obtained at 28 days for red lump stone concrete were 13.72 N/mm<sup>2</sup> at w/c ratio of 0.53 for mix ratio 1:2:4 and 8.74 N/mm<sup>2</sup> for mix ratio 1:3:6, at w/c ratio of 0.55<em>.</em> These values were not up to 20 N/mm<sup>2</sup> which is the ACI 318 (1995) recommendation for structural concrete.<em> </em>Therefore, Okigwe red lump stone must not be used in  making structural concrete using mixes 1:2:4 and 1:3:6.</p>


Sign in / Sign up

Export Citation Format

Share Document