scholarly journals Effect of air inlet duct features and grater thickness on cooking banana drying characteristics using active indirect mode solar dryer

2019 ◽  
Vol 38 (4) ◽  
pp. 1056 ◽  
Author(s):  
P.J. Etim ◽  
A.B. Eke ◽  
K.J. Simonyan
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 350 ◽  
Author(s):  
Wengang Hao ◽  
Shuonan Liu ◽  
Baoqi Mi ◽  
Yanhua Lai

A new hybrid solar dryer was designed and constructed in this study, which consisted of a flat-plate solar collector with dual-function (DF-FPSC), drying chamber with glass, fan etc. The DF-FPSC was firstly applied in drying agricultural products. The innovative application of hybrid solar dryer can control the drying chamber air temperature within a suitable range by different operation strategies. Drying experiments for lemon slices in the hybrid solar dryer were conducted by comparing open sun drying (OSD). Eight mathematical models of drying characteristics were employed to select the most suitable model for describing the drying curves of lemon slices. Furthermore, energy, exergy economic and environment (4E) analysis were also adopted to analyze the drying process of lemon slices. The results show that under the same experimental condition, the drying capability of the hybrid solar dryer was stronger than that of OSD. Meanwhile, it was found that the Two term and Wang and Singh models were the most suitable for fitting the lemon slices’ drying characteristics inside the hybrid solar dryer. The drying chamber air temperature can be controlled under about 60 °C during the process of lemon slices’ drying. The experimental results show the feasibility and validity of the proposed hybrid solar dryer.


2020 ◽  
Vol 9 (3) ◽  
pp. e123932667
Author(s):  
Ana Carolina Ribeiro Stoppe ◽  
José Luiz Vieira Neto ◽  
Kassia Graciele dos Santos

Facing the challenges to develop more efficient solar dryers, this work used the Computational fluid dynamics (CFD) to test different configurations of lateral air feeding in a fixed bed solar dryer. Through the simulations, it was found the best configuration of air inlet that provided a better fluid-particle contact. It was made a fixed bed solar dryer, which was tested using soybeans seeds and Moringa oleifera LAM leaves to evaluate the drying rate using two bed configurations: fully opened and partially opened inlets. The CFD results indicated that the air flow rate was more pronounced at the bed top, near the exhaust fan. This can explain the poor drying near the bottom for the experiments performed with all lateral inlets opened. According to the simulation results, the air velocity profile was more homogeneous when the air was fed only near the bottom. So, the use of a partially opened configuration led to a more homogenous solar drying, with a drying rate about 300% higher than the one using the fully opened inlets.


2014 ◽  
Vol 4 (6) ◽  
pp. 281-287 ◽  
Author(s):  
Singh Papu ◽  
◽  
Singh Sweta ◽  
Singh B.R ◽  
Singh Jaivir ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Waheed Deshmukh ◽  
Mahesh N. Varma ◽  
Chang Kyoo Yoo ◽  
Kailas L. Wasewar

Drying is a simultaneous heat and mass transfer energy intensive operation, widely used as a food preservation technique. In view of improper postharvest methods, energy constraint, and environmental impact of conventional drying methods, solar drying could be a practical, economical, and environmentally reliable alternative. In the present paper applicability of mixed mode solar cabinet dryer was investigated for drying of commercially important and export oriented ginger. Freshly harvested ginger slices were successfully dried from initial moisture content of 621.50 to 12.19% (d.b.) and their drying characteristics, quality parameters, and kinetics were evaluated. The results showed that present solar dryer could be successfully applied for drying of ginger in view of quality, reduced drying time, and zero energy requirement as compared to conventional open sun drying and convective drying techniques, respectively. Drying curves showed that drying occurred in falling rate period and no constant period was observed. The effective moisture diffusivity was determined by using Fick’s second law and found to be 1.789×10-9 m2/s. The drying data was fitted to five thin layer drying models and compared using statistical criteria. Page model was found to be most suitable to describe the drying kinetics of ginger in solar dryer under natural convection among the tested models.


Desalination ◽  
2009 ◽  
Vol 239 (1-3) ◽  
pp. 266-275 ◽  
Author(s):  
Mustafa Aktaş ◽  
İlhan Ceylan ◽  
Sezayi Yilmaz

2020 ◽  
Vol 22 (1) ◽  
pp. 253-272
Author(s):  
S. Khaldi ◽  
A. N. Korti ◽  
S. Abboudi

AbstractIn this work, an indirect solar dryer integrated thermal storage for drying figs. (Ficuscarica) is studied numerically. Unsteady turbulent airflow and heat transfer through a two-dimensional model is carried out for a typical day of August under the climatic conditions of Tlemcen (Algeria). Effects of air inlet size and thickness of the packed bed on the dynamic and thermal behaviors of the dryer with and without packed bed have been discussed. The study shows that: (1) Increase the inlet size from 0.04 m to 0.10 m can accelerate the extraction of air by about 13% and reduce the maximum crops temperature by about 14%. (2) The packed bed can reduce the mass flow rate extracted by 22% and the fluctuations of air temperature by 1.3%. (3) A packed bed with a thickness of 0.15 m can extend the operating time of the dryer up to 23%.


2015 ◽  
Vol 18 (4) ◽  
pp. 102-107 ◽  
Author(s):  
Olawale Usman Dairo ◽  
Adewole Ayobami Aderinlewo ◽  
Olayemi Johnson Adeosun ◽  
Ibukun Adekola Ola ◽  
Tolulope Salaudeen

Abstract Drying characteristics of cassava slices was investigated in a mixed mode natural convection solar dryer to obtain a suitable mathematical model describing the drying. The average drying chamber temperature was between 34 ±2 °C and 50 ±1.8 °C, while 10 commonly used thin layer drying models were used for drying curve modelling. Coefficient of determination (R2) and root mean square error (RMSE) were used to determine the models performances. The drying curve of cassava slices showed a reduction of moisture content with increased drying time in the solar dryer, and the variation of moisture ratio exponentially decreased with increased drying time. The Midilli and Logarithmic models showed better fit to the experimental drying data of cassava slices. As compared with other models tested, there were no significant differences (p >0.05) in the R2 values obtained for the Midilli and Logarithmic models; hence, the Logarithmic model was preferable because of the lower RMSE. The diffusion mechanism could be used to describe the drying of cassava slices that was found to be in the falling rate period. A diffusion coefficient (Deff) of 1.22 × 10-8 m2 s-1 was obtained, which was within the established standard for food products.


Sign in / Sign up

Export Citation Format

Share Document