scholarly journals Assessment and Prevention Strategies of Soil Surface Crusting Caused by Rainfall Events: Case Study of Sebeya Catchment Agricultural Land in Rwanda

Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

The history of soil erosion is an integral part of the agriculture. All over the world, wherever human being started the agricultural operations, there exists the problem of soil erosion in some extent. Soil erosion leads to the reduction of water infiltration rate and enhances runoff and soil degradation. This study focuses on Sebeya catchment located in the Western part of Rwanda. The main objective of this study was to assess various preventive measures against soil surface crusting and development of runoff coefficients in order to minimize the soil loss in Sebeya catchment agricultural fields. The proposed methodology was much concerned with the efficiency analysis of soil conservation practice of mulching in maize cover crops. The names of the three experimental field plots sited are Maize-Fertilizer-Mulching (MFM), Maize-Fertilizer (MF) and Bare Soil (BS) which were set in Rugerero Sector of Rubavu District. Each of these 3 plots was constructed with its runoff collecting tank and they were under similar conditions except land cover. Samples of soil from field plots and water from runoff collecting tanks were tested for soil classification and soil loss estimation from each plot respectively. The analysis of results showed that soil of the experimental plots is a gravelly sand with (sand:56.27%; clay and silt: 3.24% and gravel: 40.49%). Also, the results showed that the plot coded as MFM, has high moisture content with low runoff and soil loss compared to 2 other plots. This research revealed that soil conservation practices such as surface mulching and vegetative cover reduce runoff, soil loss and are well recommended for preventing and controlling soil surface crusting. Keywords: Soil erosion, mulching, soil crusting, field experiments, Rwanda

2019 ◽  
Vol 11 (19) ◽  
pp. 5339 ◽  
Author(s):  
Jullian Souza Sone ◽  
Paulo T. Sanches de Oliveira ◽  
Pedro A. Pereira Zamboni ◽  
Nelson O. Motta Vieira ◽  
Glauber Altrão Carvalho ◽  
...  

Integrating agricultural land uses is a suitable alternative for fostering economic development and improving food security. However, the effects of long-term integrated systems on soil erosion and water infiltration are still poorly understood. Here, we investigate the influence of different agricultural land uses on soil erosion and water infiltration in an Oxisol site located in the Brazilian Cerrado region. The experimental area consisted of continuous grazing under variable stocking rates with regular fertilization (CG-RF), continuous cropping under no-till (CC-NT) and no-till with 4-year subsoiling (CC-SS), rotation of one year cropping and three years livestock in the livestock phase (C1-L3), rotation of four years cropping and four years livestock in the cropping phase (CL-4C) and in the livestock phase (CL-4L), and integrated crop-livestock-forestry in the cropping phase (CLF-C) and in the livestock phase (CLF-L). To evaluate water infiltration and soil loss, we used a rainfall simulator with a constant rainfall intensity of 74.9 ± 3.6 mm h−1 in plots of 0.7 m2. We carried out 72 rainfall simulations comprising four repetitions in each treatment under vegetation and bare soil. Stable infiltration rate (SIR) ranged from 45.9 to 74.8 mm h−1 and 19.4 to 70.8 mm h−1 under vegetation covers and bare soil, respectively. Our findings indicated that SIR values under CLF-C were 60% greater than under CG-RF. We also found that soil loss rates under CLF-C were 50% smaller than under CG-RF. The crop–livestock rotation period that presented better results of SIR and soil loss was one year of cropping and three years of livestock (C1-L3). Overall, we noted that SIR and soil loss values under CLF-C are similar to the Cerrado native vegetation. Therefore, our study reveals the opportunity to increase agricultural production, improve food supply, and reduce soil erosion with adequate soil and agricultural management.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 89 ◽  
Author(s):  
Itzhak Katra

Many soils throughout the world are currently associated with soil erosion by wind and dust emissions. Dust emission processes have major implications for loss of soil resources (such as clays and nutrients) and human exposure to air pollution. This work provides a review on field experiments of dust emission based on previous studies, with new insight into the role of soil aggregation. The work focuses on dust processes in semi-arid soils that are subjected to increased agricultural land use. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in soil plots representing long-term and short-term influences of land uses such as agriculture, grazing, and natural preserves. The results show the impacts of soil disturbances by human activities on the soil aggregation and dust fluxes and provide quantitative estimates of soil loss over time. Substantial loss of PM10 (particulate matter [PM] that is less than 10 micrometers in diameter) was recorded in most experimental conditions. The measured PM10 fluxes highlight the significant implications for soil nutrient resources in annual balance and management strategies, as well as for PM loading to the atmosphere and the risk of air pollution.


2021 ◽  
Vol 67 (No. 4) ◽  
pp. 230-235
Author(s):  
David Kabelka ◽  
David Kincl ◽  
Jan Vopravil ◽  
Petr Vráblík

Soil degradation caused by water erosion in sloping hop gardens is definitely a serious issue because the space in inter-rows is without plant residues for most of the year in traditional cultivation. Cover crops in inter-rows of hop gardens and their efficiency in soil conservation are assessed in this article. There is only little research available in this area, and our data bring unique information on water erosion in hop gardens. Technologies with different types of cover crops were always compared with the conventional cultivation. The research was conducted within the years 2016–2020. A field rainfall simulator was used to determine the soil conservation effectiveness of selected technologies. The simulated rainfall was performed in two stages of cover crops growth with the main aim to measure the overall soil loss. The outcomes from the measurements confirmed that cover crops in inter-rows of hop gardens protect the soil surface from falling raindrops and significantly (P-value < 0.05) reduce soil loss. It can be concluded that this technology had a soil conservation effect already one month after sowing, and it is a basis for sustainable agricultural management on sloping hop gardens.  


2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 313 ◽  
Author(s):  
C. Carroll ◽  
L. Merton ◽  
P. Burger

In 1993, a field study commenced to determine the impact of vegetative cover and slope on runoff, erosion, and water quality at 3 open-cut coal mine sites. Runoff, sediment, and water quality were measured on 0.01-ha field plots from 3 slope gradients (10, 20, 30%), with pasture and tree treatments imposed on soil and spoil material, and 2 soil and spoil plots left bare. The greatest soil erosion occurred before pasture cover established, when a large surface area of soil (>0.5 plot area) was exposed to rainfall and overland flow. Once buffel grass (Cenchrus ciliaris) colonised soil plots, there were negligible differences in soil erosion between slope gradients. On spoil, Rhodes grass (Chloris gayana) reduced in situ soluble salt content, and reduced runoff electrical conductivity to levels measured in surrounding creeks. Where spoil crusted there was poor vegetative growth and unacceptably large runoff and erosion rates throughout the study.


2020 ◽  
Vol 13 (3) ◽  
pp. 1117
Author(s):  
Julio Caetano Tomazoni ◽  
Ana Paula Vansan

Este trabalho tem como objetivo avaliar a erosão hídrica laminar do solo, por meio da Equação Universal de Perdas de Solos Revisada (RUSLE) na bacia hidrográfica do rio São José, localizada no município de Francisco Beltrão (PR).  A perda de solo média anual (A) foi determinada através da RUSLE para os anos 2000, 2005, 2009, 2015 e 2017 utilizando-se técnicas de geoprocessamento com o auxílio do software ArcGis 10.0. O fator erosividade da chuva (R) foi determinado utilizando-se dados pluviométricos correspondentes ao período de 1974 a 2016. O fator erodibilidade do solo (K) foi obtido através da análise de amostras de solo coletadas in loco. O fator topográfico (LS) foi estimado por meio dos dados altimétricos e hidrográficos da bacia. Os fatores de uso e manejo do solo (C) e de práticas conservacionistas do solo (P) foram determinados por meio da caracterização multitemporal do uso e ocupação do solo, através de imagens de satélite. O potencial natural de erosão (PNE) foi determinado pela multiplicação dos fatores R, K e LS.A estimativa de perda de solo (A) foi determinada pela multiplicação do PNE pelos fatores C e P.  Use of Geoprocessing Techniques to Study Laminar Water Erosion in Watershed of Southwest Paraná A B S T R A C TThe objective of this work is evaluate the soil erosion by the Universal Equation of Soil Losses Revised (RUSLE) in the São José river basin, located in the municipality of Francisco Beltrão (PR). The average annual soil loss (A) was determined through RUSLE for the years 2000, 2005, 2009, 2015 and 2017 using geoprocessing techniques with ArcGis 10.0 software. Rainfallerosivity (R) was determined using rainfall data from 1974 to 2016, being determined at 11521.26 11521,26 MJ.mm.ha-1.h-1.year-1. The soil erodibility factor (K) was obtained through the analysis of soil samples collected on the spot (0,03018 t.ha.h/ha.MJ.mm, 0,02771 t.ha.h/ha.MJ.mm e 0,02342 t.ha.h/ha.MJ.mm). The topographic factor (LS) was estimated by the altimetric and hydrographic data of the basin. Soil use and management (C) and soil conservation (P) were determined through multitemporal characterization of land use and occupation, using satellite images. The natural erosion potential (NEP) was determined by multiplying the R, K and LS factors, with more than half of the total area of the watershed with very strong PNE. The soil loss estimate (A) was determined by multiplying the NEP by factors C and P with predominance of the class called low (0 to 10 t/ha/year) denoting the reduction of erosion rates through factors C and P, helping to protect the soil from the erosion process.Key words: Soil Erosion; Watershed, Revised Universal Soil Loss Equation, Geoprocessing, Software.


2021 ◽  
Vol 8 (1) ◽  
pp. 26
Author(s):  
Manti Patil ◽  
Radheshyam Patel ◽  
Arnab Saha

Soil erosion is one of the most critical environmental hazards of recent times. It broadly affects to agricultural land and reservoir sedimentation and its consequences are very harmful. In agricultural land, soil erosion affects the fertility of soil and its composition, crop production, soil quality and land quality, yield and crop quality, infiltration rate and water holding capacity, organic matter and plant nutrient and groundwater regimes. In reservoir sedimentation process the consequences of soil erosion process are reduction of the reservoir capacity, life of reservoir, water supply, power generation etc. Based on these two aspects, an attempt has been made to the present study utilizing Revised Universal Soil Loss Equation (RUSLE) has been used in integration with remote sensing and GIS techniques to assess the spatial pattern of annual rate of soil erosion, average annual soil erosion rate and erosion prone areas in the MAN catchment. The RUSLE considers several factors such as rainfall, soil erodibility, slope length and steepness, land use and land cover and erosion control practice for soil erosion prediction. In the present study, it is found that average annual soil erosion rate for the MAN catchment is 13.01-tons/ha/year, which is higher than that of adopted and recommended values for the project. It has been found that 53% area of the MAN catchment has negligible soil erosion rate (less than 2-tons/ha/year). Its spatial distribution found on flat land of upper MAN catchment. It has been detected that 26% area of MAN catchment has moderate to extremely severe soil erosion rate (greater than 10-tons/ha/year). Its spatial distribution has been found on undulated topography of the middle MAN catchment. It is proposed to treat this area by catchment area treatment activity.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2786 ◽  
Author(s):  
Safwan Mohammed ◽  
Hazem G. Abdo ◽  
Szilard Szabo ◽  
Quoc Bao Pham ◽  
Imre J. Holb ◽  
...  

Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2020 ◽  
Vol 12 (9) ◽  
pp. 1365 ◽  
Author(s):  
Panos Panagos ◽  
Cristiano Ballabio ◽  
Jean Poesen ◽  
Emanuele Lugato ◽  
Simone Scarpa ◽  
...  

Soil erosion is one of the eight threats in the Soil Thematic Strategy, the main policy instrument dedicated to soil protection in the European Union (EU). During the last decade, soil erosion indicators have been included in monitoring the performance of the Common Agricultural Policy (CAP) and the progress towards the Sustainable Development Goals (SDGs). This study comes five years after the assessment of soil loss by water erosion in the EU [Environmental science & policy 54, 438–447 (2015)], where a soil erosion modelling baseline for 2010 was developed. Here, we present an update of the EU assessment of soil loss by water erosion for the year 2016. The estimated long-term average erosion rate decreased by 0.4% between 2010 and 2016. This small decrease of soil loss was due to a limited increase of applied soil conservation practices and land cover change observed at the EU level. The modelling results suggest that, currently, ca. 25% of the EU land has erosion rates higher than the recommended sustainable threshold (2 t ha−1 yr−1) and more than 6% of agricultural lands suffer from severe erosion (11 t ha−1 yr−1). The results suggest that a more incisive set of measures of soil conservation is needed to mitigate soil erosion across the EU. However, targeted measures are recommendable at regional and national level as soil erosion trends are diverse between countries which show heterogeneous application of conservation practices.


Sign in / Sign up

Export Citation Format

Share Document