scholarly journals Protective effect of midazolam against convulsion in neonatal rats via down-regulation of LC3 and Beclin-1 expression

2020 ◽  
Vol 19 (3) ◽  
pp. 557-563
Author(s):  
Juan Shi ◽  
Shuzhong Jiang ◽  
Qinhua Wang ◽  
Jiajia Hua ◽  
Feifan Xu ◽  
...  

Purpose: To investigate the effect of midazolam on growth of neurocytes in vitro and in neonatal rats. Methods: Neurocyte proliferation and activity of lactate dehydrogenase were assessed by MTT and lactate dehydrogenase assays, respectively. Western blotting was used to determine the effect of midazolam on LC3, Bax, p62 and Beclin-1 protein expressions. Results: The suppression of neurocyte proliferation byconvulsion was alleviated significantly (p < 0.05) by midazolum treatment. Exposure of convulsion model of neurocytes to midazolum suppressed LC3, Bax, p62 and Beclin-1 protein expression. Midazolum exposure of convulsion model of neurocytes suppressed LDH, caspase-3, caspase-8 and caspase-9 activities. The 3-MA (autophagy inhibitor) treatment also significantly (p < 0.05) promoted neurocyte viability after convulsion induction. In convulsion-induced neurocytes, 3-MA exposure suppressed expression of caspase-3/8/9, LC3, Bax, Beclin-1 and p62, while application of midazolum treatment to the rats with convulsion markedly decreased brain water content and neurocyte apoptosis (p < 0.05). Treatment with midazolum inhibited LC3, p62 and Beclin-1 expression in the rat model of convulsion. Conclusion: Midazolum promotes neurocyte proliferation and inhibits edema development via downregulation of autophagy. Therefore, midazolum can potentially be used for the treatment of convulsion, but further studies need to be carried out first. Keywords: Convulsion, Neurocytes, Caspase, Autophagy, Mitochondrial pathway

2020 ◽  
Author(s):  
Guiqing Zhou ◽  
Jianhui Liu ◽  
Xiangyang Li ◽  
Yujian Sang ◽  
Yue Zhang ◽  
...  

Abstract Background: Silica nanoparticles (SiNPs) are found in environmental particulate matter and are proven to have adverse effects on fertility. The relationship and underlying mechanisms between miRNAs and apoptosis induced by SiNPs during spermatogenesis is currently ambiguous. Experimental design: The present study was designed to investigate the role of miRNA-450b-3p in the reproductive toxicity caused by SiNPs. In vivo, 40 male mice were randomly divided into control and SiNPs groups, 20 per group. The mice in the SiNPs group were administrated 20 mg/kg SiNPs by tracheal perfusion once every 5 days, for 35 days, and the control group were given the equivalent of a normal luminal saline. In vitro, spermatocyte cells were divided into 0 and 5 μg/mL SiNPs groups, after passaged for 30 generations, the GC-2spd cells in 5 μg/mL SiNPs groups were transfected with miRNA-450b-3p and its mimic and inhibitor. Results: In vivo, the results showed that SiNPs damaged tissue structures of testis, decreased the quantity and quality of the sperm, reduced the expression of miR-450b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, SiNPs obviously repressed the viability and increased the LDH level and apoptosis rate, decreased the levels of the miR-450b-3p, significantly enhanced the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3; while the mimic of miR-450b-3p reversed the changes induced by SiNPs, but inhibitor further promoted the effects induced by SiNPs.Conclusion: The result suggested that SiNPs could induce the spermatocyte apoptosis by inhibiting the miR-450b-3p expression to target promoting the MTCH2 resulting in activating mitochondrial apoptotic signaling pathways in the spermatocyte cells.


2018 ◽  
Vol 46 (2) ◽  
pp. 618-632 ◽  
Author(s):  
Ning Wang ◽  
Yang Lu ◽  
Kui Wang ◽  
Wei-song Li ◽  
Pan Lu ◽  
...  

Background/Aims: Isoflurane inhibited neurogenesis and induced subsequent neurocognitive deficits in developing brain. Simvastatin exerts neuroprotection in a wide range of brain injury models. In the present study, we investigated whether simvastatin could attenuate neurogenetic inhibition and cognitive deficits induced by isoflurane exposure in neonatal rats. Methods: Sprague-Dawley rats at postnatal day (PND) 7 and neural stem cells (NSCs) were treated with either gas mixture, isoflurane, or simvastatin 60 min prior to isoflurane exposure, respectively. The rats were decapitated at PND 8 and PND 10 for detection of neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of the hippocampus by immunostaining. NSC proliferation, viability and apoptosis were assessed by immunohistochemistry, CCK-8 and TUNEL, respectively. The protein expressions of caspase-3, p-Akt and p-GSK-3β both in vivo and vitro were assessed by western blotting. Cognitive functions were assessed by Morris Water Maze test and context fear conditioning test at the adult. Results: Isoflurane exposure inhibited neurogenesis in the SVZ and SGZ, decreased NSC proliferation and viability, promoted NSC apoptosis and led to late cognitive deficits. Furthermore, isoflurane increased caspase-3 expression and decreased protein expressions of p-Akt and p-GSK-3β both in vivo and in vitro. Pretreatment with simvastatin attenuated isoflurane-elicited changes in NSCs and cognitive function. Co-treatment with LY294002 reversed the effect of simvastatin on NSCs in vitro. Conclusion: We for the first time showed that simvastatin, by upregulating Akt/GSK-3β signaling pathway, alleviated isoflurane-induced neurogenetic damage and neurocognitive deficits in developing rat brain.


2021 ◽  
Vol 35 ◽  
pp. 205873842110314
Author(s):  
Fei Zeng ◽  
Jierong Luo ◽  
Hong Han ◽  
Wenjie Xie ◽  
Lingzhi Wang ◽  
...  

Hyperglycemia-induced oxidative stress plays important roles in the development of non-alcoholic fatty liver disease (NAFLD), which is a common complication in diabetic patients. The Nrf2-Keap1 pathway is important for cell antioxidant protection, while its role in exogenous antioxidant mediated protection against NAFLD is unclear. We thus, postulated that antioxidant treatment with allopurinol (ALP) may attenuate diabetic liver injury and explored the underlying mechanisms. Control (C) and streptozotocin (STZ)-induced diabetes rats (D) were untreated or treated with ALP for 4 weeks starting at 1 week after diabetes induction. Serum levels of alanine aminotransferase (ALT) and aspartate transaminase (AST), production of lipid peroxidation product malondialdehyde (MDA), and serum superoxide dismutase (SOD) were detected. Liver protein expressions of cleaved-caspase 3, IL-1β, nuclear factor-erythroid-2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), P62, Kelch-like ECH-associated protein 1 (Keap1), and LC3 were analyzed. In vitro, cultured rat normal hepatocytes BRL-3A were grouped to normal glucose (5.5 mM, NG) or high glucose (25 mM, HG) and treated with or without allopurinol (100 µM) for 48 h. Rats in the D group demonstrated liver injury evidenced as increased serum levels of ALT and AST. Diabetes increased apoptotic cell death, enhanced liver protein expressions of cleaved-caspase 3 and IL-1β with concomitantly increased production of MDA while serum SOD content was significantly reduced (all P < 0.05 vs C). In the meantime, protein levels of Nrf2, HO-1, and P62 were reduced while Keap1 and LC3 were increased in the untreated D group as compared to control ( P < 0.05 vs C). And all the above alterations were significantly attenuated by ALP. Similar to our findings obtained from in vivo study, we got the same results in in vitro experiments. It is concluded that ALP activates the Nrf2/p62 pathway to ameliorate oxidative stress and liver injury in diabetic rats.


2018 ◽  
Vol 47 (1-3) ◽  
pp. 270-276
Author(s):  
Grazia Maria Virzì ◽  
Chiara Borga ◽  
Chiara Pasqualin ◽  
Silvia Pastori ◽  
Alessandra Brocca ◽  
...  

Background: Sepsis is a life-threatening condition often associated with a high incidence of multiple organs injury. Several papers suggested the immune response by itself, with the production of humoral inflammatory mediators, is crucial in determining organ injury. However, little is known of how sepsis directly induces organ injury at the cellular levels. To assess this point, we set up an in vitro study to investigate the response of renal tubular cells (RTCs), monocytes (U937) and hepatocytes (HepG2) after 24 h-incubation with septic patients’ plasma. Methods: We enrolled 26 septic patients (“test” group). We evaluated cell viability, apoptosis and necrosis by flow cytometer. Caspase-3,-8,-9 and cytochrome-c concentrations have been analyzed using the Human enzyme-linked immunosorbent assay kit. Results: We found that a decrease of cell viability in all cell lines tested was associated to the increase of apoptosis in RTCs and U937 (p < 0.0001) and increase of necrosis in HepG2 (p < 0.5). The increase of apoptosis in RTCs and U937 cells was confirmed by higher levels of caspase-3 (p < 0.0001). We showed that apoptosis in both RTCs and U937 was triggered by the activation of the intrinsic pathway, as caspase-9 and cytochrome-c levels significantly increased (p < 0.0001), while caspase-8 did not change. This assumption was strengthened by the significant correlation of caspase-9 with both cytochrome-c (r = 0.73 for RTCs and r = 0.69 for U937) and caspase-3 (r = 0.69 for RTCs and r = 0.63 for U937). Conclusion: Humoral mediators in septic patients’ plasma induce apoptosis. This fact suggests that apoptosis inhibitors should be investigated as future strategy to reduce sepsis-induced organ damages.


2002 ◽  
Vol 83 (12) ◽  
pp. 3153-3161 ◽  
Author(s):  
R. Duval ◽  
V. Bellet ◽  
S. Delebassée ◽  
C. Bosgiraud

Maedi–visna virus (MVV) causes encephalitis, pneumonia and arthritis in sheep. In vitro, MVV infection and replication lead to strong cytopathic effects characterized by syncytia formation and subsequent cellular lysis. It was demonstrated previously that MVV infection in vitro induces cell death of sheep choroid plexus cells (SCPC) by a mechanism that can be associated with apoptotic cell death. Here, the relative implication of several caspases during acute infection with MVV is investigated by employing diverse in vitro and in situ strategies. It was demonstrated using specific pairs of caspase substrates and inhibitors that, during in vitro infection of SCPC by MVV, the two major pathways of caspase activation (i.e. intrinsic and extrinsic pathways) were stimulated: significant caspase-9 and -8 activities, as well as caspase-3 activity, were detected. To study the role of caspases during MVV infection in vitro, specific, cell-permeable, caspase inhibitors were used. First, these results showed that both z-DEVD-FMK (a potent inhibitor of caspase-3-like activities) and z-VAD-FMK (a broad spectrum caspase inhibitor) inhibit caspase-9, -8 and -3 activities. Second, both irreversible caspase inhibitors, z-DEVD-FMK and z-VAD-FMK, delayed MVV-induced cellular lysis as well as virus growth. Third, during SCPC in vitro infection by MVV, cells were positively stained with FITC-VAD-FMK, a probe that specifically stains cells containing active caspases. In conclusion, these data suggest that MVV infection in vitro induces SCPC cell death by a mechanism that is strongly dependent on active caspases.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


2008 ◽  
Vol 237 (12) ◽  
pp. 3892-3903 ◽  
Author(s):  
Emilie Arnault ◽  
Lucie Tosca ◽  
Anne-Marie Courtot ◽  
Mireille Doussau ◽  
Arlette Pesty ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 330-330
Author(s):  
Antonia Cagnetta ◽  
Michele Cea ◽  
Chirag Acharya ◽  
Teresa Calimeri ◽  
Yu-Tzu Tai ◽  
...  

Abstract Abstract 330 Background: Our previous study demonstrated that inhibition of nicotinamide phosphoribosyltransferase (Nampt) acts by severely depleting intracellular NAD+ content and thus eliciting mitochondrial dysfunction and autophagic MM cell death. The proteasome inhibitor Bortezomib induces anti-MM activity by affecting a variety of signaling pathways. However, as with other agents, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we demonstrate that combining Nampt inhibitor and bortezomb induces synergistic anti-MM cell death both in vitro using MM cell lines or patient CD138+ MM cells and in vivo in a human plasmacytoma xenograft mouse model. Material and Methods: We utilized MM.1S, MM.1R, RPMI-8226, and U266 human MM cell lines, as well as purified tumor cells from patients relapsing after prior therapies. Cell viability and apoptosis assays were performed using Annexin V/PI staining. Intracellular NAD+ level and proteasome activity were quantified after 12, 24, and 48h exposure to single/combination drugs by specific assays. In vitro angiogenesis was assessed by Matrigel capillary-like tube structure formation assay. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, and tubulin. CB-17 SCID male mice (n = 28; 7 mice/EA group) were subcutaneously inoculated with 5.0 × 106 MM.1S cells in 100 microliters of serum free RPMI-1640 medium. When tumors were measurable (3 weeks after MM cell injection), mice were treated for three weeks with vehicle alone, FK866 (30mg/kg 4 days weekly), Bortezomib (0.5 mg/kg twice weekly), or FK866 (30 mg/kg) plus Bortezomib (0.5 mg/kg). Statistical significance of differences observed in FK866, Bortezomib or combination-treated mice was determined using a Student t test. Isobologram analysis was performed using “CalcuSyn” software program. A combination index < 1.0 indicates synergism. Results/Discussion: Combining FK866 and Bortezomib induces synergistic anti-MM activity in vitro against MM cell lines (P<0.005, CI < 1) or patient CD138-positive MM cells (P< 0.004). FK866 plus Bortezomib-induced synergistic effect is associated with: 1)activation of caspase-8, caspase-9, caspase-3, and PARP; 2) improved intracellular NAD+ dissipation; 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteolytic activities; 4) inhibition of NF-kappa B signaling; and 5) inhibition of angiogenesis. Importantly, the ectopic overexpression of Nampt rescues this observed synergistic effect; conversely, Nampt knockdown by RNAi significantly enhances the anti-MM effect of bortezomib. In the murine xenograft MM model, low dose combination FK866 (30 mg/kg) and Bortezomib (0.5 mg/kg) is well tolerated, significantly inhibits tumor growth (P < 0.001), and prolongs host survival (2–2.5 months in mice receiving combined drugs, P = 0.001). These findings demonstrate that intracellular NAD+ levels represent a major determinant in the ability of bortezomib to induce apoptosis of MM cells, providing the rationale for clinical protocols evaluating FK866 together with Bortezomib to improve patient outcome in MM. Disclosures: Munshi: Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tsen-Ni Tsai ◽  
Jia-Jing Ho ◽  
Maw-Shung Liu ◽  
Tzu-Ying Lee ◽  
Mei-Chin Lu ◽  
...  

This study examined the role of exogenous heat shock protein 72 (Hsp72) in reversing sepsis-induced liver dysfunction. Sepsis was induced by cecal ligation and puncture. Liver function was determined on the basis of the enzymatic activities of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). Apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3 and caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) protein expressions were analyzed using Western blotting. Results showed GOT and GPT levels increased during sepsis, and levels were restored following the administration of human recombinant Hsp72 (rhHsp72). Increased liver tissue apoptosis was observed during sepsis, and normal apoptosis resumed on rhHsp72 administration. The Bcl-2/Bax ratio, cleaved caspase-3, caspase-9, and PARP protein expressions in the liver tissues were upregulated during sepsis and normalized after rhHsp72 treatment. We conclude that, during sepsis, exogenous Hsp72 restored liver dysfunction by inhibiting apoptosis via the mitochondria-initiated caspase pathway.


Sign in / Sign up

Export Citation Format

Share Document