scholarly journals Applying performance indices in plantwide modelling for a comparative study of wastewater treatment plant operational strategies

Water SA ◽  
2018 ◽  
Vol 44 (4 October) ◽  
Author(s):  
Justine De Ketele ◽  
Dries Davister ◽  
David S Ikumi

Achievement of good effluent quality is always the main goal for wastewater treatment plant (WWTP) systems. However, these WWTPs have developed further objectives that include efficient design and strategic control options, with the prospect of their conversion into waste resource recovery facilities (WRRFs) that operate on reduced energy costs. With all these aspects becoming an intrinsic part of waste treatment, mathematical models that simulate WWTP unit processes are becoming of increasing relevance for the achievement of WRRF goals (including good effluent quality, low energy costs and nutrient recovery). It is expected that these mathematical models will benefit potential future applications of automation process control, which have also been developing rapidly with the availability of more reliable and affordable sensors. However, simulated automation control strategies require a thorough evaluation protocol to ensure their viability prior to being adopted as efficient operation control measures. This study considers the comparison of different control strategies implemented on a standard WWTP layout, for plant optimization. The initial task was to define performance indices, effluent quality index (EQI) and operation cost index (OCI), based on a previous investigation by the International Water Association (IWA) benchmark simulation modelling (BSM) task group. These performance indices were then used to evaluate the following strategies: (i) adding a fermentation tank, (ii) dosing flocculant and (iii) implementing a balancing tank. A control strategy was only assumed to be effective with improvement or maintenance of effluent quality. Overall, the evaluation exercise proved to be useful for providing expert advice on efficiency of proposed waste treatment system layouts, towards determination of the best configuration of future WRRFs. For instance, it was notable that significant organic strength is needed for removal of nutrients recycled back from the anaerobic digestion (AD) system into the activated sludge (AS) – hence alternate methods to put the nutrient-rich outflow from the AD system to good use are required.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6386
Author(s):  
Abdul Gaffar Sheik ◽  
Eagalapati Tejaswini ◽  
Murali Mohan Seepana ◽  
Seshagiri Rao Ambati ◽  
Montse Meneses ◽  
...  

Simultaneous removal of nitrogen and phosphorous is a recommended practice while treating wastewater. In the present study, control strategies based on proportional-integral (PI), model predictive control (MPC), and fuzzy logic are developed and implemented on a plant-wide wastewater treatment plant. Four combinations of control frameworks are developed in order to reduce the operational cost and improve the effluent quality. As a working platform, a Benchmark simulation model (BSM2-P) is used. A default control framework with PI controllers is used to control nitrate and dissolved oxygen (DO) by manipulating the internal recycle and oxygen mass transfer coefficient (KLa). Hierarchical control topology is proposed in which a lower-level control framework with PI controllers is implemented to DO in the sixth reactor by regulating the KLa of the fifth, sixth, and seventh reactors, and fuzzy and MPC are used at the supervisory level. This supervisory level considers the ammonia in the last aerobic reactor as a feedback signal to alter the DO set-points. PI-fuzzy showed improved effluent quality by 21.1%, total phosphorus removal rate by 33.3% with an increase of operational cost, and a slight increase in the production rates of greenhouse gases. In all the control design frameworks, a trade-off is observed between operational cost and effluent quality.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


2001 ◽  
Vol 43 (11) ◽  
pp. 189-196 ◽  
Author(s):  
M. Bongards

One of the main problems in operating a wastewater treatment plant is the purification of the excess water from dewatering and pressing of sludge. Because of a high load of organic material and of nitrogen it has to be buffered and treated together with the inflowing wastewater. Different control strategies are discussed. A combination of neural network for predicting outflow values one hour in advance and fuzzy controller for dosing the sludge water are presented. This design allows the construction of a highly non-linear predictive controller adapted to the behaviour of the controlled system with a relatively simple and easy to optimise fuzzy controller. Measurement results of its operation on a municipal wastewater treatment plant of 60,000 inhabitant equivalents are presented and discussed. In several months of operation the system has proved very reliable and robust tool for improving the system's efficiency.


Author(s):  
R. Babko ◽  
V. Pliashechnyk ◽  
T. Kuzmina ◽  
Y. Danko ◽  
J. Szulżyk-Cieplak ◽  
...  

Abstract The work is devoted to the task of simplifying the assessment of the effect of effluents from treatment facilities on the river hydrobiocenosis. The studies were carried out on the mountain river Uzh (Uzhgorod, Ukraine). Our approach to assessing the impact of waste treatment facilities on the river receiver is based on the estimate of the similarity of species composition and quantitative characteristics of populations of organisms from the aerotank and from the river. It is shown that the quantitative development of populations of species of ciliates from the aeration tank is a good indicator for assessing the degradation of organic matter coming with wastewater. The use of qualitative and quantitative characteristics of the protozoa from the wastewater treatment plant as a criterion for assessing the quality of the environment in the area of wastewater discharge showed their representativeness and effectiveness. The use of a limited number of species makes it possible to conduct an express assessment of the effect of effluents on receiving reservoirs for specialists working with activated sludge in the laboratories of treatment facilities.


2014 ◽  
Vol 67 (5) ◽  
Author(s):  
M. F. Rahmat ◽  
S. I. Samsudin ◽  
N. A. Wahab ◽  
Mashitah Che Razali ◽  
Muhammad Sani Gaya

Wastewater treatment plant (WWTP) is highly known with the variation and uncertainty of the parameters, making them a challenge to be tuned and controlled. In this paper, an adaptive decentralized PI controller is developed for nonlinear activated sludge WWTP. The work is highlighted in auto-tuning the PI control parameters in satisfying straighten effluent quality and hence optimizing the nitrogen removal. The PI controller parameters are obtained by using simple updating algorithm developed based on adaptive interaction theory. The error function is minimized directly by approximate Frechet tuning algorithm without explicit estimation of the model. The effectiveness of the proposed controller is then validated by comparing the performance of activated sludge process to the benchmark PI under three different weather conditions with realistic variations in influent flow rate and composition. The algorithm is effectively applied in activated sludge system with improved dynamic performances in effluent quality index and energy consumed of Benchmark Simulation Model No.1.


Sign in / Sign up

Export Citation Format

Share Document