Characterization and Antimicrobial Spectrum of Bifidocin B, a Bacteriocin Produced by Bifidobacterium bifidum NCFB 1454†‡

1998 ◽  
Vol 61 (1) ◽  
pp. 47-51 ◽  
Author(s):  
ZELIHA YILDIRIM ◽  
MICHAEL G. JOHNSON

Five strains of Bifidobacterium bifidum (ATCC 11863 and 29591, and NCFB 1453, 1454, and 1455) were examined for production of bacteriocins in MRS broth with 0.05% cysteine. Only strain NCFB 1454 excreted a bacteriocin into the broth; it was designated bifidocin B. Bifidocin B was sensitive to several proteolytic enzymes (protease IV, pronase E, protease XVII, proteinase K, trypsin, α-chymotrypsin, papain, and pepsin), but was resistant to catalase, peroxidase, lipase, lysozyme, cellulase, ribonuclease A, and amylases. It was also resistant to organic solvents such as ethyl alcohol, acetone, hexane, chloroform, methanol, and ether, and to heating at 90°C for 15, 30, and 60 min or at 121°C for 15 min. Bifidocin B remained active after storage at −20 or −70°C for 3 months and retained biological activity after exposure to pH values of 2 to 10. Bifidocin B was active against some food-borne pathogens and food spoilage bacteria such as Listeria, Enterococcus, Bacillus, Lactobacillus, Leuconostoc, and Pediococcus species but was not active against the other gram-positive and gram-negative bacteria tested. Bifidocin B was produced during exponential phase, reaching a maximum activity of 3,200 AU/ml at early stationary phase. Bifidocin B had a molecular mass of about 3.3 kDa as analyzed by Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis.

2007 ◽  
Vol 73 (7) ◽  
pp. 2247-2250 ◽  
Author(s):  
Sirinat Srionnual ◽  
Fujitoshi Yanagida ◽  
Li-Hsiu Lin ◽  
Kuang-Nan Hsiao ◽  
Yi-sheng Chen

ABSTRACT Weissella cibaria 110, isolated from the Thai fermented fish product plaa-som, was found to produce a bacteriocin active against some gram-positive bacteria. Bacteriocin activity was not eliminated by exposure to high temperatures or catalase but was destroyed by exposure to the proteolytic enzymes proteinase K and trypsin. The bacteriocin from W. cibaria 110 was purified, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified bacteriocin contained one protein band that was approximately 2.5 kDa in size. Mass spectrometry analysis showed the mass of the peptide to be approximately 3,487.8 Da. N-terminal amino acid sequence analysis was performed, and 27 amino acids were identified. Because it has no similarity to other known bacteriocins, this bacteriocin was defined as a new bacteriocin and termed weissellicin 110.


2006 ◽  
Vol 69 (8) ◽  
pp. 1937-1943 ◽  
Author(s):  
PONGSAK RATTANACHAIKUNSOPON ◽  
PARICHAT PHUMKHACHORN

Lactobacillus plantarum N014 was isolated from nham, a traditional Thai fermented pork, and exhibited antimicrobial activity against Listeria monocytogenes. Its bacteriocin had a broad inhibitory spectrum toward both gram-positive and gram-negative bacteria. The bacteriocin activity was sensitive to all proteolytic enzymes used in this study, including papain, pepsin, pronase E, proteinase K, and trypsin, but was resistant to the other enzymes, such as α-amylase, lipase A, and lysozyme. Furthermore, activity was stable over various heat treatments and pH values. The bacteriocin exerted a bacteriolytic mode of action. It was produced during the exponential growth phase and reached its highest level as producer cells entered the stationary phase. Adsorption of the bacteriocin onto producer cells was pH-dependent. No bacteriocin adsorption was detected at pH 1 to 3, whereas 100% bacteriocin adsorption was found at pH 7. Plasmid isolation revealed that L. plantarum N014 contained no plasmids. From Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis and growth inhibition testing against L. monocytogenes, the estimated molecular mass of L. plantarum N014 bacteriocin was 8 kDa.


2012 ◽  
Vol 3 (4) ◽  
pp. 319-330 ◽  
Author(s):  
S.D. Todorov ◽  
L. Favaro ◽  
P. Gibbs ◽  
M. Vaz-Velho

Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.


2002 ◽  
Vol 68 (7) ◽  
pp. 3532-3536 ◽  
Author(s):  
María J. Benito ◽  
Mar Rodríguez ◽  
Félix Núñez ◽  
Miguel A. Asensio ◽  
María E. Bermúdez ◽  
...  

ABSTRACT An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60°C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45°C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.


2017 ◽  
Vol 65 (2) ◽  
Author(s):  
Arisaí Hernández-Sámano ◽  
Xochitl Guzmán-García ◽  
Raquel García-Barrientos ◽  
Isabel Guerrero-Legarreta

Common carp (Cyprinus carpio) is an aquatic organism of commercial value able to survive in polluted environments; carps contain proteolytic enzymes of physiological importance and potential industrial application. The objective of this work was partially purify and study the proteolytic activity at different pH of carp proteases living in a polluted environment. Three carps were captured in different zones of Zumpango polluted lagoon (Mexico) at 1 m of maximum deep. Protease crude extracts were obtained from dorsal muscle by aqueous extraction and fractionated by 20 %, 50 %, 80 %-saturated (NH4)2SO4. Fractions extracted with 50 % and 80 %-saturated (NH4)2SO4 were selected for their high proteolytic activity and concentrated by ultrafiltration through 100 kDa molecular weight cutoff membranes and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The crude proteolytic extract had significantly higher activity (19.7 - 20.3 U / mg) at pH 2, 5, and 7 (P < 0.001). Fractions obtained with 20 %, 50 % and 80 % - saturated (NH4)2SO4 showed peak activity at pH 5 (2.8 U / mg) and pH 6 (2.2 U / mg); pH 6 (4.3 U / mg) and pH 3 - 4 (3.6 - 3.7 U / mg); pH 3 (10.8 U / mg) and pH 10 (10.6 U / mg); respectively. Subfractions of < 100 kDa, obtained with 50 % and 80 %-saturated (NH4)2SO4, had peak proteolytic activity at alkaline pH. A < 100 kDa fraction, obtained with 80 %-saturated (NH4)2SO4, had the highest proteolytic activity (37.3 - 43.7 U / mg) at pH 8 - 10, purification factor of 3 and 19.1 % recovery. Thirteen proteins between 9.8 to 104.8 kDa were identified in the crude extract. Peak protein concentration was observed for 31 - 33 and 39 - 41 kDa, suggesting the possibility predominance of serine- and aspartyl- proteases, respectively. We suggest this protease with maximum activity at alkaline pH is related to the adaptation of C. carpio to polluted waters with high pH. Although unsuitable for human consumption, these organisms can be a source of protease production aimed to several uses as in the industry and waste water treatment among others.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1163 ◽  
Author(s):  
Chien Thang Doan ◽  
Thi Ngoc Tran ◽  
Van Bon Nguyen ◽  
Trung Dung Tran ◽  
Anh Dzung Nguyen ◽  
...  

Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.


2002 ◽  
Vol 184 (7) ◽  
pp. 1865-1872 ◽  
Author(s):  
Katsushiro Miyamoto ◽  
Eiji Nukui ◽  
Hiroyuki Itoh ◽  
Takaji Sato ◽  
Takeshi Kobayashi ◽  
...  

ABSTRACT Alteromonas sp. strain O-7 secretes several proteins in response to chitin induction. We have found that one of these proteins, designated AprIV, is a novel chitin-binding protease involved in chitinolytic activity. The gene encoding AprIV (aprIV) was cloned in Escherichia coli. DNA sequencing analysis revealed that the open reading frame of aprIV encoded a protein of 547 amino acids with a calculated molecular mass of 57,104 Da. AprIV is a modular enzyme consisting of five domains: the signal sequence, the N-terminal proregion, the family A subtilase region, the polycystic kidney disease domain (PkdD), and the chitin-binding domain type 3 (ChtBD3). Expression plasmids coding for PkdD or both PkdD and ChtBD (PkdD-ChtBD) were constructed. The PkdD-ChtBD but not PkdD exhibited strong binding to α-chitin and β-chitin. Western and Northern analyses demonstrated that aprIV was induced in the presence of N-acetylglucosamine, N-acetylchitobiose, or chitin. Native AprIV was purified to homogeneity from Alteromonas sp. strain O-7 and characterized. The molecular mass of mature AprIV was estimated to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of AprIV were pH 11.5 and 35°C, respectively, and even at 10°C the enzyme showed 25% of the maximum activity. Pretreatment of native chitin with AprIV significantly promoted chitinase activity.


2011 ◽  
Vol 57 (12) ◽  
pp. 993-1001 ◽  
Author(s):  
R. Satish Kumar ◽  
P. Kanmani ◽  
N. Yuvaraj ◽  
K.A. Paari ◽  
V. Pattukumar ◽  
...  

A bacteriocin producer strain MC13 was isolated from the gut of Mugil cephalus (grey mullet) and identified as Enterococcus faecium . The bacteriocin of E. faecium MC13 was purified to homogeneity, as confirmed by Tricine sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS–PAGE). Reverse-phase high-performance liquid chromatography (HPLC) analysis showed a single active fraction eluted at 26 min, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry analysis showed the molecular mass to be 2.148 kDa. The clear zone in native PAGE corresponding to enterocin MC13 band further substantiated its molecular mass. A dialyzed sample (semicrude preparation) of enterocin MC13 was broad spectrum in its action and inhibited important seafood-borne pathogens: Listeria monocytogenes , Vibrio parahaemolyticus , and Vibrio vulnificus . This antibacterial substance was sensitive to proteolytic enzymes: trypsin, protease, and chymotrypsin but insensitive to catalase and lipase, confirming that inhibition was due to the proteinaceous molecule, i.e., bacteriocin, and not due to hydrogen peroxide. Enterocin MC13 tolerated heat treatment (up to 90 °C for 20 min). Enterococcus faecium MC13 was effective in bile salt tolerance, acid tolerance, and adhesion to the HT-29 cell line. These properties reveal the potential of E. faecium MC13 to be a probiotic bacterium. Enterococcus faecium MC13 could be used as potential fish probiotic against pathogens such as V. parahaemolyticus, Vibrio harveyi , and Aeromonas hydrophila in fisheries. Also, this could be a valuable seafood biopreservative against L. monocytogenes.


2004 ◽  
Vol 70 (12) ◽  
pp. 7311-7320 ◽  
Author(s):  
Judit Marokházi ◽  
Katalin Lengyel ◽  
Szilvia Pekár ◽  
Gabriella Felföldi ◽  
András Patthy ◽  
...  

ABSTRACT Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (∼74, ∼55, ∼54, and ∼37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokházi, G. Kóczán, F. Hudecz, L. Gráf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.


2003 ◽  
Vol 69 (10) ◽  
pp. 5746-5753 ◽  
Author(s):  
Yukio Yamamoto ◽  
Yoshikazu Togawa ◽  
Makoto Shimosaka ◽  
Mitsuo Okazaki

ABSTRACT Lactic acid bacteria exhibiting activity against the gram-positive bacterium Bacillus subtilis were isolated from rice bran. One of the isolates, identified as Enterococcus faecalis RJ-11, exhibited a wide spectrum of growth inhibition with various gram-positive bacteria. A bacteriocin purified from culture fluid, designated enterocin RJ-11, was heat stable and was not sensitive to acid and alkaline conditions, but it was sensitive to several proteolytic enzymes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that enterocin RJ-11 had a molecular weight of 5,000 in its monomeric form. The amino acid sequence determined for purified enterocin RJ-11 exhibited high levels of similarity to the sequences of enterocins produced by Enterococcus faecium.


Sign in / Sign up

Export Citation Format

Share Document