Thermal Inactivation of H5N1 High Pathogenicity Avian Influenza Virus in Naturally Infected Chicken Meat

2007 ◽  
Vol 70 (3) ◽  
pp. 674-680 ◽  
Author(s):  
COLLEEN THOMAS ◽  
DAVID E. SWAYNE

Thermal inactivation of the H5N1 high pathogenicity avian influenza (HPAI) virus strain A/chicken/Korea/ES/2003 (Korea/03) was quantitatively measured in thigh and breast meat harvested from infected chickens. The Korea/03 titers were recorded as the mean embryo infectious dose (EID50) and were 108.0 EID50/g in uncooked thigh samples and 107.5 EID50/g in uncooked breast samples. Survival curves were constructed for Korea/03 in chicken thigh and breast meat at 1°C intervals for temperatures of 57 to 61°C. Although some curves had a slightly biphasic shape, a linear model provided a fair-to-good fit at all temperatures, with R2 values of 0.85 to 0.93. Stepwise linear regression revealed that meat type did not contribute significantly to the regression model and generated a single linear regression equation for z-value calculations and D-value predictions for Korea/03 in both meat types. The z-value and the upper limit of the 95% confidence interval for the z-value were 4.64 and 5.32°C, respectively. From the lowest temperature to the highest, the predicted D-values and the upper limits of their 95% prediction intervals (conservative D-values) for 57 to 61°C were 241.2 and 321.1 s, 146.8 and 195.4 s, 89.3 and 118.9 s, 54.4 and 72.4 s, and 33.1 and 44.0 s. D-values and conservative D-values predicted for higher temperatures were 0.28 and 0.50 s for 70°C and 0.041 and 0.073 s for 73.9°C. Calculations with the conservative D-values predicted that cooking chicken meat according to current U.S. Department of Agriculture Food Safety and Inspection Service time-temperature guidelines will inactivate Korea/03 in a heavily contaminated meat sample, such as those tested in this study, with a large margin of safety.

2009 ◽  
Vol 72 (9) ◽  
pp. 1997-2000 ◽  
Author(s):  
COLLEEN THOMAS ◽  
DAVID E. SWAYNE

High-pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketing and trade activity. This study presents thermal inactivation data for the HPAIV strain A/chicken/PA/1370/83 (H5N2) (PA/83) in dried egg white with a moisture content (7.5%) similar to that found in commercially available spray-dried egg white products. The 95% upper confidence limits for D-values calculated from linear regression of the survival curves at 54.4, 60.0, 65.5, and 71.1°C were 475.4, 192.2, 141.0, and 50.1 min, respectively. The line equation y = [0.05494 × °C] + 5.5693 (root mean square error = 0.0711) was obtained by linear regression of experimental D-values versus temperature. Conservative predictions based on the thermal inactivation data suggest that standard industry pasteurization protocols would be very effective for HPAIV inactivation in dried egg white. For example, these calculations predict that a 7-log reduction would take only 2.6 days at 54.4°C.


2008 ◽  
Vol 71 (6) ◽  
pp. 1214-1222 ◽  
Author(s):  
COLLEEN THOMAS ◽  
DANIEL J. KING ◽  
DAVID E. SWAYNE

Avian influenza viruses (AIV) and Newcastle disease viruses (NDV) of high pathogenicity cause severe systemic disease with high mortality in chickens and can be isolated from the meat of infected chickens. Although AIV and NDV strains of low pathogenicity are typically not present in chicken meat, virus particles in respiratory secretions or feces are possible sources of carcass contamination. Because spread of AIV and NDV is associated with movement of infected birds or their products, the presence of these viruses in chicken meat is cause for concern. This study presents thermal inactivation data for two viruses of high pathogenicity in chickens (AIV strain A/chicken/Pennsylvania/1370/1983 and NDV strain APMV-1/chicken/California/S0212676/2002) and two viruses of low pathogenicity in chickens (AIV strain A/chicken/Texas/298313/2004 and NDV strain APMV-1/chicken/Northern Ireland/Ulster/1967). Under the conditions of the assay, high-pathogenicity AIV was inactivated more slowly in meat from naturally infected chickens than in artificially infected chicken meat with a similar virus titer. In contrast, high-pathogenicity NDV was inactivated similarly in naturally and artificially infected meat. Linear regression models predicted that the current U.S. Department of Agriculture–Food Safety and Inspection Service time-temperature guidelines for cooking chicken meat to achieve a 7-log reduction of Salmonella also would effectively inactivate the AIV and NDV strains tested. Experimentally, the AIV and NDV strains used in this study (and the previously studied H5N1 high-pathogenicity AIV strain A/chicken/Korea/ES/2003) were effectively inactivated in chicken meat held at 70 or 73.9°C for less than 1 s.


2021 ◽  
Author(s):  
Kosuke Soda ◽  
Yukiko Tomioka ◽  
Chiharu Hidaka ◽  
Mayu Matsushita ◽  
Tatsufumi Usui ◽  
...  

Abstract Background: There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 viruses in the winter of 2016–2017 in Japan, which caused large numbers of deaths among several endangered bird species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eurasian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6). Results: All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated with ≥104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤106.3 EID50 of virus was recovered from systemic tissues and swab samples including eyeballs and conjunctival swabs. Conclusions: These results indicate that the subject duck species have a potential to be a source of infection of clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral dissemination.


1997 ◽  
Vol 60 (5) ◽  
pp. 471-475 ◽  
Author(s):  
ALICIA ORTA-RAMIREZ ◽  
JAMES F. PRICE ◽  
YIH-CHIH HSU ◽  
GIRIDARAN J. VEERAMUTHU ◽  
JAMIE S. CHERRY-MERRITT ◽  
...  

The USDA has established processing schedules for beef products based on the destruction of pathogens. Several enzymes have been suggested as potential indicators of heat processing. However, no relationship between the inactivation rates of these enzymes and those of pathogenic microorganisms has been determined. Our objective was to compare the thermal inactivation of Escherichia coli O157:H7 and Salmonella senftenberg to those of endogenous muscle proteins. Inoculated and noninoculated ground beef samples were heated at four temperatures for predetermined intervals of time in thermal-death-time studies. Bacterial counts were determined and enzymes were assayed for residual activity. The D values for E. coli O157:H7 were 46.10, 6.44, 0.43, and 0.12 min at 53, 58, 63, and 68°C, respectively, with a z value of 5.60°C. The D values for S. senftenberg were 53.00, 15.17, 2.08, and 0.22 min at 53, 58, 63, and 68°C, respectively, with a z value of 6.24°C. Apparent D values at 53, 58, 63, and 68°C were 352.93, 26.31, 5.56, and 3.33 min for acid phosphatase; 6968.64, 543.48, 19.61, and 1.40 min for lactate dehydrogenase; and 3870.97, 2678.59, 769.23, and 42.92 min for peroxidase; with z values of 7.41,3.99, and 7.80°C, respectively. Apparent D values at 53, 58, 63, and 66°C were 325.03, 60.07, 3.07, and 1.34 min for phosphoglycerate mutase; 606.72, 89.86, 4.40, and 1.28 min for glyceraldehyde-3-phosphate dehydrogenase; and 153.06, 20.13, 2.25, and 0.74 min for triose phosphate isomerase; with z values of 5.18, 4.71, and 5.56°C, respectively. The temperature dependence of triose phosphate isomerase was similar to those of both E. coli O157 :H7 and S. senftenberg, suggesting that this enzyme could be used as an endogenous time-temperature indicator in beef products.


Author(s):  
Susmita Phattepuri ◽  
Prince Subba ◽  
Arjun Ghimire ◽  
Shiv Nandan Sah

Milk is an excellent medium for the growth of many bacteria. This study aimed to determine antibiotic profiling and thermal inactivation of Staphylococcus aureus and Escherichia coli isolated from raw milk of Dharan. Total viable count, total Staphylococcal count, and total coliform count were carried out by conventional microbiological methods. Identification was done on the basis of Gram staining and biochemical tests. The antibiotic susceptibility test of the isolates carried out by the modified Kirby-Baur disc diffusion method. Thermal inactivation of S. aureus and E. coli were carried out by subjecting to thermal treatment in a water bath. Total plate count ranged from 204×104 CFU/mL to 332×105 CFU/mL. Total staphylococcal count and total coliform count ranged from 14×105 CFU/mL to 8×106 CFU/mL and 11×104 CFU/mL to 3×106 CFU/mL respectively. S. aureus showed an increasing resistance patterns towards Ampicillin, Cefotixin, Carbenicillin and Cefotaxime. Ciprofloxacin, Erythromycin, Amikacin, Gentamycin, Azithromycin, and Chloramphenicol were found to be effective against S. aureus. All the E. coli isolates were resistant to Ampicillin and least resistant to Cefotixin. Chloramphenicol, Amikacin, Azithromycin, and Nalidixic acid were found highly effective to E. coli. The D-values for S. aureus at 56°C, 58°C and 60°C were 1.36 min, 1.19 min, and 1.09 min respectively. The Z-value was 14.92°C. While D-values were obtained as 0.98 min, 0.75 min, and 0.57 min for E. coli at 56° C, 58° C and 60° C respectively, and Z-value was 9.75° C. Hence, S. aureus was found to be more heat resistant than E. coli.


1992 ◽  
Vol 55 (7) ◽  
pp. 492-496 ◽  
Author(s):  
I-PING D. HUANG ◽  
AHMED E. YOUSEF ◽  
ELMER H. MARTH ◽  
M. EILEEN MATTHEWS

Heat resistance of Listeria monocytogenes strains V7 and Scott A in chicken gravy and changes in heat resistance during refrigerated storage were studied. After chicken gravy was made, it was cooled to 40°C, inoculated with 105 CFU L. monocytogenes per ml of gravy, and then stored at 7°C for 10 d. Gravy was heated at 50, 55, 60, and 65°C immediately after inoculation and after 1, 3, 5, and 10 d of refrigerated storage. The D values for strains Scott A and V7 in gravy heated at 50°C at day 0 were 119 and 195 min and at day 10 they were 115 and 119 min, respectively, whereas at 65°C comparable values at day 0 were 0.48 and 0.19 min and at day 10 they were 0.014 and 0.007 min. Heat resistance (expressed as D values) was greater at day 0 than at the end of refrigerated storage. The z values ranged from 3.41 to 6.10°C and were highest at the early stages of chill storage and then decreased at the later stages. Strain V7 was more heat resistant than Scott A at 50°C. Strain Scott A always had a higher z value than did strain V7 at the same storage interval. A heat treatment greater than the 4-D process recommended by the U.S. Department of Agriculture was required to inactivate the large numbers of L. monocytogenes that developed in chicken gravy during refrigerated storage.


2008 ◽  
Vol 71 (11) ◽  
pp. 2208-2212 ◽  
Author(s):  
J. B. DAY ◽  
S. TRUJILLO ◽  
Y.-Y. D. HAO ◽  
R. C. WHITING

Francisella tularensis is a gram-negative bacterium that can cause gastrointestinal or oropharyngeal tularemia from ingestion of contaminated food or water. Despite the potential for accidental or intentional contamination of foods with F. tularensis, little information exists on the thermal stability of this organism in food matrices. In the present study, the thermal resistance of the live vaccine strain of F. tularensis in four food products (liquid infant formula, apple juice, mango juice, and orange juice) was investigated. D-values ranged from 12 s (57.5°C) to 580 s (50°C) in infant formula with a z-value of 4.37°C. D-values in apple juice ranged from 8 s (57.5°C) to 59 s (50°C) with a z-value of 9.17°C. The live vaccine strain did not survive at temperatures above 55°C in mango juice and orange juice (>6-log inactivation). D-values at 55 to 47.5°C were 15 to 59 s in mango juice and 16 to 105 s in orange juice with z-values of 9.28 and 12.30°C, respectively. These results indicate that current pasteurization parameters used for destroying common foodborne bacterial pathogens are adequate for eliminating F. tularensis in the four foods tested. This study is the first to determine thermal inactivation of F. tularensis in specific foods and will permit comparisons with the thermal inactivation data of other more traditional foodborne pathogens.


1999 ◽  
Vol 62 (9) ◽  
pp. 980-985 ◽  
Author(s):  
R. Y. MURPHY ◽  
B. P. MARKS ◽  
E. R. JOHNSON ◽  
M. G. JOHNSON

Thermal inactivation of six Salmonella spp. and Listeria innocua was evaluated in ground chicken breast and liquid medium. Survival of Salmonella and Listeria was affected by the medium composition. Under the same thermal process condition, significantly more Salmonella and Listeria survived in chicken breast meat than in 0.1% peptone-agar solution. The thermal lethality of six tested Salmonella spp. was additive in chicken meat. Survival of Listeria in chicken meat during thermal processing was not affected by the presence of the six Salmonella spp. Sample size and shape affected the inactivation of Salmonella and Listeria in chicken meat during thermal processing.


Sign in / Sign up

Export Citation Format

Share Document