scholarly journals Lactic Acid Bacteria against Listeria monocytogenes

2021 ◽  
Vol 49 ◽  
Author(s):  
Juliana Sousa Bogea ◽  
Luciane Manto ◽  
Jucilene Sena Dos Santos ◽  
Lara Franco Dos Santos ◽  
Franciele Maria Gotardo ◽  
...  

Background: Listeria monocytogenes is a pathogenic bacterium that can contaminate food and cause public health problems due its ability to form biofilms and resistance to sanitizers, it is responsible for sanitary and economic losses in food producing establishments. The difficulties in controlling biofilms and increasing resistance to traditional antibacterial agents is motivating studies of alternative potential biological agents for the control of pathogenic biofilms, among which lactic acid bacteria (LABs) are included. The objective of this work was to evaluate the activity of LABs against Listeria monocytogenes biofilm formation on polystyrene plates, a surface commonly used in the food industry.Materials, Methods & Results: Lyophilized commercial strains of Bifidobacterium animalis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivaris and Lactobacillus acidophilus were used. The strain of Listeria monocytogenes (L4) was isolated from polystyrene mats from a poultry slaughterhouse cutting room and demonstrated the ability to attach to microplates and resistance to sanitizers (sodium hypochlorite and hydrogen peroxide) at all times, temperatures and tested surfaces. The antimicrobial activity of LABs was evaluated by the agar diffusion method. The LABs that presented action on Listeria monocytogenes were selected for the inhibition and/or removal of biofilms in microplates, and all experiments were carried out in triplicate. Only Bifidobacterium animalis and Lactobacillus plantarum demonstrated action against Listeria. monocytogenes in the agar diffusion assays and were selected for inhibition and competition assays. Furthermore, competition of LABs against Listeria monocytogenes adhesion was evaluated. There was no significant difference between LABs and Listeria monocytogenes, alone or in combination, at temperatures of 30ºC and 37ºC in the Listeria monocytogenes inhibition assays on polystyrene surface. The lactic acid bacteria evaluated did not demonstrate inhibition of Listeria monocytogenes adhesin testes with optical density visualization, however, it was possible to identify a reduction in Listeria monocytogenes counts with the application of Bifidobacterium animals and Lactobacillus plantarum in the testes of competition against biofilm formation. In competition tests Bifidobacterium animalis and Lactobacillus plantarum have an injunction in Listeria monocytogenes, indicating that these lactic acid bacteria can retard Listeria biofilm formation on polystyrene surfaces and thus help control the pathogen in the food industry.Discussion: A potential mechanism to control biofilm adhesion and formation of pathogens for nutrients and fixation on surfaces, multiplication factors and surfaces are a challenge in controlling biofilms of pathogenic microorganisms, alternative measures to traditional methods for inactivating pathogens and biofilm formers bacteria are necessary. In this sense, lactic acid bacteria generate high levels of bacteriocin and are effective in inhibiting the biofilm of pathogenic bacteria, however, our study did not reveal this. We verified that Bifidobacterium animalis and Lactobacillus plantarum have an inhibitory action on Listeria monocytogenes, indicating that these lactic acid bacteria can be used to delay the formation of biofilms by Listeria on polystyrene surfaces, helping to control this pathogen in food industry.Keywords: control of biofilm, pathogenic bacteria, food industry, polystyrene surface, FTDs.

Author(s):  
Chiamaka Linda Mgbechidinma ◽  
Caleb Oladele Adegoke ◽  
Samuel Temitope Ogunbanwo

This research focused on the isolation and antagonistic action of Lactic Acid Bacteria (LAB) against certain antibiotics resistance disease causing bacteria and fungai. Antibiotic resistance is an increasing problem amid humans and animals in land-dwelling or marine environments hence making treatment of infections difficult. Antibiotic susceptibility test for bacteria pathogen was performed using the disc diffusion method while antifungal susceptibility and antimicrobial activity of LAB were carried out using agar well diffusion method. All the pathogenic bacteria used as indicator organisms were multiple antibiotics resistance and 100 percent resistance to gentamycin and pefloxacillin with the exception of Staphlococcus aureus. Candida species was 100 percent resistance to Ketoconazole, fluconazole and miconazole. Twenty-two LAB isolates were gotten from fermented milk and milk products. The isolates were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus delbrueckii, Leuconostoc mesenteriodes, Lactobacillus casei, Lactobacillus brevis, Lactobacillus acidophilus, Lactococcus lactis, Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus rhamnosus. LAB produced lactic acid to varying concentrations, having its production peak (1.80g/L) at 48 h of incubation by Lactobacillus plantarum. Lactobacillus fermentumNU2 produced the highest quantity of diacetyl (2.80g/L) while Lactobacillus acidophilusGO8 and Lactococcus lactisGO9 produced the highest amount of hydrogen peroxide (0.030g/L) at 48 h of incubation. Lactobacillus plantarumGO16 inhibited Bacillus cereus while Lactobacillus acidophilusGO8 inhibited Staphylococcus aureus with 28 mm zone of inhibition. Lactobacillus plantarumNU1 and Lactobacillus plantarumGO16 inhibited Candida albican with 25 mm zone of inhibition. LAB can be used as probiotics in preventing infections caused by Candida species and pathogenic bacteria. Keywords: Lactic Acid Bacteria, Fermented milk, antibiotics resistance, antagonistic activity, pathogens.


2020 ◽  
Vol 9 (1) ◽  
pp. 96
Author(s):  
Made Juli Antari ◽  
Ni Nyoman Puspawati ◽  
Putu Ari Sandhi Wipradnyadewi

The aim of the research was to find the potency of Lactic Acid Bacteria isolated from breast milk on inhibiting Listeria monocytogenes FNCC 0156 and to find the magnitude of lactic acid bacteria from breast milk in inhibiting L. monocytogenes FNCC 0156. This reseach consists of two phase: antimicrobial activity of lactic acid bacteria from breast milk and activity of bacteriocin against L. monocytogenes FNCC 0156. Isolate used in this research was A1, A3, A6, A8, A9, B3, B7, B8, and B10b. Antimicrobial activity of lactic acid bacteria from breast milk against L. monocytogenes FNCC 0156 was performed cell free supernatant, cell free neutral supernatant, and cell free neutral heated supernatant. The test was performed by well-agar diffusion method and contact method. The activity of bacteriocin was carried out according to the optimum incubation time of bacteriocin production in cell free heated neutral supernatant. The highest antimicrobial activity was supernatant treatment by well-agar diffusion method and contact method showed by isolate A1 with inhibition diameter of 10.60 mm and a decrease of 1.66 log cycle. The highest antimicrobial activity was neutral supernatant treatment by well-agar diffusion method and contact method showed by isolate B8 with inhibition diameter of 5.11 mm and increased only by 0.18 log cycle. The highest antimicrobial activity on the heated neutral supernatant treatment by well-agar diffusion method and contact method showed by isolate A6 with inhibition diameter of 0.85 mm and a decrease of 0.48 log cycle. The two isolates of cell free neutral heated supernatant treatment was isolate A6 and isolate B8 suspected to have bacteriocin compounds was then continued with isolation of bacteriocin. The result of the second phase showed that optimum time for bacteriocin production of isolate A6 was 36 hours and B8 was 60 hours. The highest antimicrobial activity of bacteriocin was showen by isolate A6 with an average inhibition diameter of 5.36 mm, followed by B8 with an average inhibition diameter of 2.44 mm. Keywords: lactic acid bacteria, breast milk, Listeria monocytogenes FNCC 0156, antimicrobial activity, bacteriocin


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


Author(s):  
Agnes Lee Chiu Nee ◽  
Mohd Nizam Lani ◽  
Rozila Alias ◽  
Zaiton Hassan

Vinegars are most widely used as preservatives in food industry. Vinegars are known for their health benefits; however, the roles of vinegar-associated microflora in locally produced vinegars are not well established. The objectives of this study are to isolate and identify the lactic acid bacteria (LAB) from black rice vinegar and coconut vinegar, measure their pH and titratable acidity, and determine their antibacterial activity. LAB was isolated using cultural method. Phenotypic characterization of LAB was carried out using Gram-staining, oxidase test, catalase test and API 50 CHL Kit. Results from API 50 CHL Kit confirmed that BRV03M strain from black rice vinegar and CV03M strain from coconut vinegar were Lactobacillus paracasei ssp. paracasei. The identified bacteria in both samples were consistent as L. paracasei using 16S rDNA gene sequences with 93% and 99% similarity, respectively. The pH and titratable acidity percentage of both vinegars were also determined. The stability of Cell Free Supernatant-Lactic Acid Bacteria (CFS-LAB) strains within 14 days on their inhibition against selected pathogenic bacteria was determined using agar well diffusion method. The CFS-LAB strain isolated from black rice vinegar (BRV03M) was more stable within 14 days than coconut vinegar in inhibiting tested bacteria, suggesting this strain has great potential as natural antibacterial agents.


2021 ◽  
Author(s):  
Bei Zhang ◽  
Jun Chen ◽  
Guofang Wu ◽  
Lei Wang ◽  
Guangyong Qin ◽  
...  

Abstract BackgroundLactic acid bacteria with natural, effective antibacterial activity, safe and reliable characteristic, gradually become one of the key technologies in food fermentation applications, food preservation and other fields. In this study, 112 presumptive lactic acid bacteria isolated from Tibetan Qula, a fermented yak cheese popular in the Tibetan plateau, were screened for potential probiotic microorganism with antimicrobial activity.Results12 lactic acid bacteria were found to have antibacterial activity, and strain QZ50 in particular showed broad-spectrum inhibition against pathogenic bacteria, which retained its antibacterial activity after sequential removal of acids and hydrogen peroxide, indicating the production of a broad-spectrum bacteriocin that could inhibite Micrococcus luteus ATCC 28001, Staphylococcus aureus ATCC 26003, Bacillus subtilis ATCC 63501, Escherichia coli ATCC 30105, Pseudomonas aeruginosa ATCC 10104, and Salmonella enterica ATCC 50094. Strain QZ50 was identified as Lactobacillus plantarum based on physicochemical characteristics and 16S rDNA sequencing. And the optimum production conditions were evaluated to obtain the highest yield of plantaricin QZ50. The optimum medium, temperature, initial pH, and inoculum amount for plantaricin QZ50 production were Man, Rogosa, and Sharpe (MRS), 30°C, 6.5, and 3%, respectively. In addition, different C source, N source and stimulating factors in medium show significant effects on plantaricin QZ50 production (P < 0.05). The optimum C and N source were respectively glucose and yeast extract, and 2% Tween 80 contributed highest production of plantaricin QZ50. Plantaricin QZ50 exhibited strong heat stability and remained activity at pH 2.0–8.0. In addition, plantaricin QZ50 was inactivated by pepsin, proteinase K, trypsin, papain, and chymotrypsin.ConclusionsSome strains of Lactobacillus isolated from the Qula in the Tibetan plateau have good antibacterial activity which could be considered as potential probiotic. The strain of Lactobacillus plantarum QZ50, with a broad-spectrum, stable, safe, and natural antibiotic, has potential applications as a food biopreservative.


el–Hayah ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Liliek Hariani

<em>Lactic acid bacteria (LAB) are able to inhibit other bacteria by producing protein, named as bacteriocin. Bacteriocin which  produced by LAB is useful to inhibit pathogenic bacteria that harmful to human health or even makes food spoil. Bacteriocin is effective as antibacterial agent against pathogenic bacteria. Crude Extract of bacteriocin that produced by Lactobacillus plantarum DJ3 is able to inhibits the growth of E. Coli (4 mm) and S. aureus (5.33 mm). Application of bacteriocin in beef show that it able to inhibita the growth of bacteria. The amount of bacteria in beef that stored in 8 hours with bacteriocin addition are 1,3 X 10<sup>8 </sup>CFU/g, and 3.7 X  10<sup>8 </sup>CFU/g without bacteriocin addition. While the amount of bacteria in beef that stored in 12 hours with bacteriocin addition are 2.0 x 10<sup>9</sup> CFU/g and 1.5 x 10<sup>11 </sup>without bacteriocin addition</em>


2018 ◽  
Vol 30 (4) ◽  
pp. 283 ◽  
Author(s):  
Meriem Toualbia, Abd ElKader Delmi Bouras ◽  
Malika Koiche, Mohamed Kerkoud

The main objective of this study is to define probiotic bacteria efficiency against bacterial infantile diarrhea. Lactic acid bacteria (LAB) was used as a natural resource and extracted of camel milk from southern Algeria. The isolation was followed by molecular identification using the 16S rDNA sequencing method. One hundred and fifty fecal samples were collected over 18 months from children suffering from diarrhea and aged 2 years or under. Identification results reveal the isolated lactic bacteria as Lactobacillus plantarum. In the other side, a total of 120 fecal samples were positive for bacterial growth, these pathogenic bacteria were identified as: Escherichia fergusonii (92%), Salmonella enterica subsp. Diarizonae (7.33%) and Proteus mirabilis (0.66%). The inhibitory effect study of lactic acid bacteria on pathogenic bacteria shows varying effects of L. plantarum in relation to the various pathogenic isolates, mentioning that the most important effect was expressed against Escherichia fergusonii with 22 mm. All the results allow us to classify that camel's milk is a natural source rich in lactic acid bacteria, in particular L. plantarum, with an inhibitory ability against the pathogenic bacteria responsible for diarrhea. Therefore L. plantarum produces bioactive molecules responsible for this effect.


Sign in / Sign up

Export Citation Format

Share Document