Patulin Surveillance in Apple Cider and Juice Marketed in Michigan

2009 ◽  
Vol 72 (6) ◽  
pp. 1255-1261 ◽  
Author(s):  
KERRI L. HARRIS ◽  
GERD BOBE ◽  
LESLIE D. BOURQUIN

Patulin is the most common mycotoxin found in apples and apple juices. The objective of this study was to determine the concentrations of patulin in (i) apple cider produced and marketed by Michigan apple cider mills during the fall seasons of 2002 to 2003 and 2003 to 2004 and (ii) apple juice and cider, including shelf-stable products, marketed in retail grocery stores in Michigan throughout 2005 and 2006. End product samples (n = 493) obtained from 104 Michigan apple cider mills were analyzed for patulin concentration by using solid-phase extraction followed by high-performance liquid chromatography. Patulin was detected (≥4 μg/liter) in 18.7% of all cider mill samples, with 11 samples (2.2%) having patulin concentrations of ≥50 μg/liter. A greater percentage of cider samples obtained from mills using thermal pasteurization contained detectable patulin (28.4%) than did those from mills using UV light radiation (13.5%) or no pathogen reduction treatment (17.0%). Among retail grocery store samples (n = 159), 23% of apple juice and cider samples contained detectable patulin, with 18 samples (11.3%) having patulin concentrations of ≥50 μg/liter. The U.S. Food and Drug Administration (FDA) action level for patulin is 50 μg/kg. Some apple juice samples obtained from retail grocery stores had exceptionally high patulin concentrations, ranging up to 2,700 μg/liter. Collectively, these results indicate that most apple cider and juice test samples from Michigan were below the FDA action level for patulin but that certain apple cider and juice processors have inadequate controls over patulin concentrations in final products. The industry, overall, should focus on improved quality of fruit used in juice production and improve culling procedures to reduce patulin concentrations.

2007 ◽  
Vol 90 (1) ◽  
pp. 162-166 ◽  
Author(s):  
David R Katerere ◽  
Sonja Stockenström ◽  
Gabriele Balducci ◽  
Gordon S Shephard

Abstract The performance of 4 purification methods for the analysis of patulin in apple juice was evaluated by high-performance liquid chromatography (HPLC). Samples were spiked with patulin at 10, 20, 50, 100, and 150 ppb (ng/mL) and extracted by one of 4 methods (3 solid-phase extraction and one liquidliquid extraction), and then analyzed by HPLCUV under the same isocratic conditions. The methods were validated for recovery, linearity, and precision at high and low concentrations. Recoveries were all >70% for spiking range 10-150 ppb. The relative standard deviation for repeatability was found to meet European Union Directive requirements. In addition, all the methods showed baseline separation from hydroxymethylfurfural.


2005 ◽  
Vol 15 (3) ◽  
pp. 491-494 ◽  
Author(s):  
John R. Clark

Eastern U.S. blackberries (Rubus subgenus Rubus) have advanced in recent years in production and quality of cultivar choices. Mainly a pick-your-own and local sales item of the early 1990s and before, the increased presence of blackberries in retail grocery stores in the last 10 years has broadened the market for this small fruit. Cultivars that can be shipped and have extended shelf life have been the cornerstone of this expansion. Also, off-season production in Mexico has provided fruit for retail marketing during most months of the year. Further advances in production, marketing, and consumption can be achieved with the continuation of improved cultivar development and expansion of production technology.


2014 ◽  
Vol 77 (6) ◽  
pp. 963-971 ◽  
Author(s):  
YAN ZHU ◽  
TATIANA KOUTCHMA ◽  
KEITH WARRINER ◽  
TING ZHOU

This study evaluated three UVC wavelengths (222, 254, and 282 nm) to degrade patulin introduced into apple juice or apple cider. The average UV fluences of 19.6, 84.3, 55.0, and 36.6 mJ·cm−2 achieved through exposure to UV lamps at 222-, 254-, and 282-nm wavelengths and the combination of these wavelengths, respectively, resulted in 90% reduction of patulin in apple juice. Therefore, the order of efficiency of the three wavelength lamps was as follows: far UVC (222 nm) > far UVC plus (282 nm) > UVC (254 nm). In terms of color, treatment of apple juice with 222 nm resulted in an increase in the L* (lightness) value but decreases in a* (redness) and b* (yellowness) values, although the changes were insignificantly different from the values for nontreated controls based on a sensory evaluation. The ascorbic acid loss in juice treated at 222 nm to support 90% reduction of patulin was 36.5%, compared with ascorbic acid losses of 45.3 and 36.1% in samples treated at 254 and 282 nm, respectively. The current work demonstrated that the 222-nm wavelength possesses the highest efficiency for patulin reduction in apple juice when compared with the reductions by 254 and 282 nm, with no benefit gained from using a combination of wavelengths.


2018 ◽  
Vol 67 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Lenche Velkoska-Markovska ◽  
Biljana Petanovska-Ilievska ◽  
Aleksandar Markovski

Summary The modern apple production involves the use of large amounts of pesticides that can be found in processed products such as apple juice. Harmful effects of pesticide residues on humans, especially children, are well known, hence the content of pesticide residues in fruit, vegetables and their juices should be controlled. This study presents an application of a new, relatively simple and reliable analytical method for qualitative and quantitative determination of three organophosphorus and one organonitrogen pesticide residues in apple juices. The analysis utilizes reversed-phase high-performance liquid chromatography (RP-HPLC) followed by UV diode array detection. Prior to HPLC analysis, a solid-phase extraction (SPE) was used for analytes concentration and sample clean-up. Specificity, selectivity, linearity, precision, accuracy and limit of quantification (LOQ) were examined to assess the validity of the developed method. The method had satisfactory values of multiple correlation coefficients for calibration curves (R2 ≥ 0.95 ). The precision was evaluated for the retention times and peak areas, and the estimated values for relative standard deviations (RSD) were 0.05 % - 0.18 % and 0.09 % - 0.62 %, respectively, which indicated an excellent precision of the proposed method. Under the established conditions, the recovery of analytes was 93.80 % - 119.41 %, with relative standard deviations below 0.56 %. This method was successfully applied for determination of some organophosphorus and organonitrogen pesticide residues in apple juices which were taken from Macedonian markets. The achieved values for LOQs were low enough compared to the MRLs of the investigated pesticides in apple according to the Regulation (EC) No 396/2005. Detectable residues of the examined pesticides were not found in the analyzed samples.


Author(s):  
Alexander Alekseev ◽  
Maxim Tyurin ◽  
Khuramjon Khairov ◽  
Oxana Kotina ◽  
Vyacheslav Odeyanko ◽  
...  

Abstract Granules composed of alfalfa and sunflower meal that were impregnated with avermectins (AVMs) were developed for use against the Moroccan locust, Dociostaurus maroccanus (Thunberg). Laboratory experiments with granules containing 0.15% of AVMs fed to locust nymphs resulted in 100% death within 5 d. The quantification of AVM loss after exposure of AVM-containing preparative forms to UV light for various time periods was performed using high-performance liquid chromatography (HPLC). The results showed no loss of AVMs from the granules after 3 h of their exposure to UV light. The effect of UV radiation on a thin layer of the AVM solution led to the rapid degradation of AVMs. Only 0.2% of the initial AVM amount was detected after 3 h of exposure. In the granulated form, the AVM content remained stable for 10 mo when stored at room temperature in the dark. A method combining solid-phase extraction with HPLC was developed for the quantification of AVMs in locust nymphs. The granulated AVMs are characterized by their high resistance to UVB radiation. The use of plant-based granules impregnated with AVMs can be considered a very promising tool for locust control.


Sign in / Sign up

Export Citation Format

Share Document