Reduction of Patulin in Apple Juice Products by UV Light of Different Wavelengths in the UVC Range

2014 ◽  
Vol 77 (6) ◽  
pp. 963-971 ◽  
Author(s):  
YAN ZHU ◽  
TATIANA KOUTCHMA ◽  
KEITH WARRINER ◽  
TING ZHOU

This study evaluated three UVC wavelengths (222, 254, and 282 nm) to degrade patulin introduced into apple juice or apple cider. The average UV fluences of 19.6, 84.3, 55.0, and 36.6 mJ·cm−2 achieved through exposure to UV lamps at 222-, 254-, and 282-nm wavelengths and the combination of these wavelengths, respectively, resulted in 90% reduction of patulin in apple juice. Therefore, the order of efficiency of the three wavelength lamps was as follows: far UVC (222 nm) > far UVC plus (282 nm) > UVC (254 nm). In terms of color, treatment of apple juice with 222 nm resulted in an increase in the L* (lightness) value but decreases in a* (redness) and b* (yellowness) values, although the changes were insignificantly different from the values for nontreated controls based on a sensory evaluation. The ascorbic acid loss in juice treated at 222 nm to support 90% reduction of patulin was 36.5%, compared with ascorbic acid losses of 45.3 and 36.1% in samples treated at 254 and 282 nm, respectively. The current work demonstrated that the 222-nm wavelength possesses the highest efficiency for patulin reduction in apple juice when compared with the reductions by 254 and 282 nm, with no benefit gained from using a combination of wavelengths.

2009 ◽  
Vol 72 (6) ◽  
pp. 1255-1261 ◽  
Author(s):  
KERRI L. HARRIS ◽  
GERD BOBE ◽  
LESLIE D. BOURQUIN

Patulin is the most common mycotoxin found in apples and apple juices. The objective of this study was to determine the concentrations of patulin in (i) apple cider produced and marketed by Michigan apple cider mills during the fall seasons of 2002 to 2003 and 2003 to 2004 and (ii) apple juice and cider, including shelf-stable products, marketed in retail grocery stores in Michigan throughout 2005 and 2006. End product samples (n = 493) obtained from 104 Michigan apple cider mills were analyzed for patulin concentration by using solid-phase extraction followed by high-performance liquid chromatography. Patulin was detected (≥4 μg/liter) in 18.7% of all cider mill samples, with 11 samples (2.2%) having patulin concentrations of ≥50 μg/liter. A greater percentage of cider samples obtained from mills using thermal pasteurization contained detectable patulin (28.4%) than did those from mills using UV light radiation (13.5%) or no pathogen reduction treatment (17.0%). Among retail grocery store samples (n = 159), 23% of apple juice and cider samples contained detectable patulin, with 18 samples (11.3%) having patulin concentrations of ≥50 μg/liter. The U.S. Food and Drug Administration (FDA) action level for patulin is 50 μg/kg. Some apple juice samples obtained from retail grocery stores had exceptionally high patulin concentrations, ranging up to 2,700 μg/liter. Collectively, these results indicate that most apple cider and juice test samples from Michigan were below the FDA action level for patulin but that certain apple cider and juice processors have inadequate controls over patulin concentrations in final products. The industry, overall, should focus on improved quality of fruit used in juice production and improve culling procedures to reduce patulin concentrations.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2015 ◽  
Vol 28 (4) ◽  
pp. 244-252 ◽  
Author(s):  
LUÍS GOMES DE MOURA NETO ◽  
ÉRICA MILO DE FREITAS FELIPE ROCHA ◽  
MARCOS RODRIGUES AMORIM AFONSO ◽  
SUELI RODRIGUES ◽  
JOSÉ MARIA CORREIRA DA COSTA

ABSTRACT: Dehydration is an important alternative to making the most of the use the surplus of production and take advantage of the seasonality of tropical fruits. Thus, this study aimed to evaluate the physicochemical composition of the yellow mombin pulp (Spondia mombin L.) powder, obtained by spray drying, and evaluate its sensory acceptance in the form of reconstituted juice. The physicochemical analyzes of the yellow mombin powder were: pH, soluble solids, titratable acidity, ascorbic acid and moisture, with all results in accordance with the current legislation. The addition of maltodextrin in the process reduced the sensory analysis values (color, appearance, and taste). The tested formulations, (powders with 25 and 27.05% maltodextrin) preserved, and even favored the aroma. These formulations had the following values (7.66 and 7.68) higher than the values found for integral juice (6.60).


1971 ◽  
Vol 43 (1) ◽  
pp. 20-26
Author(s):  
Taina Kuusi ◽  
Esko Pajunen

Three apple varieties, Atlas, Erstaa, and Dolgo, were studied for their suitability for juice production and for the effect of polyphenols and added ascorbic acid on the juice quality. The Atlas and Erstaa varieties were found to be very suitable as raw material for apple juice production. The juices of Atlas were best in quality but they were sensitive to browning while Erstaa juices were not. The juices of Dolgo were considered too tart, but with an exceptionally interesting flavour. Dolgo juices could probably be used in mixtures together with sweeter apple varieties. Ascorbic acid could be used to prevent browning or to stop it to the desired degree and to stabilize the colour of the juice. The second alternative was found to be better because light brownish apple juices are generally preferred. The browning of apple juice was influenced not only by the polyphenolase activity and the polyphenol concentration but also by the type of phenolic compounds. In this respect proanthocyanidins and flavanols were most significant.


Author(s):  
Zirui Ray Xiong ◽  
Anqi Chen ◽  
Glycine Zhujun Jiang ◽  
Alisha G Lewis ◽  
Christine D Sislak ◽  
...  

Wine and alcoholic apple cider are commonly back-sweetened with unpasteurized juice to produce fresh, natural, and palatable sweetened alcoholic beverages. Foodborne pathogens may be introduced from unpasteurized juice into alcoholic beverages through this back-sweetening process. Although pathogens generally do not survive under low pH conditions or high alcohol environment, the die-off of these pathogens has not been established to ensure the safety of the products. To determine the safety of these back-sweetened beverages, we evaluated the survival of three common foodborne pathogens, E. coli O157:H7, Salmonella enterica , and Listeria monocytogenes in modified white grape juice and apple juice models. White grape juice and apple juice were modified with hydrochloric acid/sodium hydroxide and ethanol to achieve conditions that are similar to the back-sweetened white wine and alcoholic apple cider. Pathogen cocktails were inoculated separately into modified juice models and their survival in the juice models were recorded over a 96-hour period. Our results show that a combination of low pH and high ethanol content resulted in a faster pathogen die-off compared to higher pH and lower ethanol conditions. The holding times required for different combinations of pH and ethanol concentration for each juice model to achieve 5-log reduction were reported. This research provides data to validate pathogen die-off to comply with Juice HACCP 5-log pathogen inactivation requirements for back-sweetened wine and alcoholic apple cider.


2013 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Dewi Tristantini ◽  
Slamet ◽  
Angela Jessica Stephanie

Photo catalytic mosquito trap is made of TiO2-Activated Carbon (AC) with a certain composition of AC. Research concerns on the heat spectrum which is produced by combination process of existing CO2 and humid air. The purpose of performance testing is to observe capability of this device in trapping mosquitoes related to the air temperature profile for heat spectrum is play important role for attracting mosquitoes. Result shows photo catalytic mosquito trap is more effective than devices which only consist of UV light or stream of CO2 and the humid air. A number of mosquitoes trapped by the photo catalyst coated panel configuration and UV lamps were lit proved far more effective because the heat production from recombination process. A little difference in temperature can be detected by mosquito. Keywords: Photo Catalytic, Mosquito, Recombination.


2020 ◽  
pp. 1-12
Author(s):  
C. El Hajj Assaf ◽  
N. De Clercq ◽  
E. De Paepe ◽  
G. Vlaemynck ◽  
E. Van Coillie ◽  
...  

Patulin (PAT), a mycotoxin mainly produced by Penicillium expansum, is of high concern with regard to human food safety. This study examined the stability of PAT in artificially contaminated cloudy apple juice (CAJ) produced on a semi-industrial scale using an innovative technology allowing degassing and pressing under low-oxygen conditions (VaculIQ 1000). The effects of adding ascorbic acid (AA), degassing during production and storing in the dark at 20 °C on the PAT concentration were studied, as well as possible degradation and reaction products formed. The highest PAT degradation (50%) was observed for flash-pasteurised juice with AA added, produced under low-oxygen conditions and degassed and stored for 14 days at 20 °C in the dark in aluminium laminate aseptic bags. Juices produced showed no significant differences in the quality parameters measured and did not show significant formation of reaction products. Further research needs to be focused on the fate of PAT in CAJ produced on an industrial level with and without addition of AA.


Sign in / Sign up

Export Citation Format

Share Document