Heat and Acid Tolerance Responses of Listeria monocytogenes as Affected by Sequential Exposure to Hurdles during Growth

2009 ◽  
Vol 72 (7) ◽  
pp. 1412-1418 ◽  
Author(s):  
PANAGIOTIS N. SKANDAMIS ◽  
JARRET D. STOPFORTH ◽  
YOHAN YOON ◽  
PATRICIA A. KENDALL ◽  
JOHN N. SOFOS

This study aimed to evaluate the effects of the level and sequence of hurdles, applied during growth, on the subsequent heat and acid tolerances of a 10-strain composite of Listeria monocytogenes. Individual strains were grown in glucose-free tryptic soy broth with 0.6% yeast extract (TSBYE–G). Then cultures were mixed and inoculated in fresh TSBYE–G (0.5% NaCl, pH 7.42; control), TSBYE–G that was supplemented with 3% NaCl (3.5% NaCl in total), or TSBYE–G with pH adjusted to 6.01 or 5.04 with lactic acid and incubated at 30°C for 24 h. Furthermore, the culture composite was exposed to the following five combinations of double sequential hurdles (12 h in each at 30°C): NaCl then pH 6.01, NaCl then pH 5.04, pH 7.42 then NaCl, pH 5.04 then NaCl, and pH 6.01 then NaCl. The heat and acid tolerances of the culture were assessed at 57°C (for 2 h) and at pH 3.5 (for 7 h), respectively, in TSBYE–G. No significant (P ≥ 0.05) differences in thermotolerance were observed among cultures exposed to various stresses. In contrast, the acid resistance followed the order: pH 6.01 = NaCl > NaCl then pH 5.04 > pH 6.01 then NaCl = pH 5.04 > pH 5.04 then NaCl > pH 7.42 then NaCl > control. The results suggest that exposure of L. monocytogenes to NaCl and low pH during growth may not affect its heat (57°C) tolerance, but it may increase its acid (pH 3.5) resistance, depending on the sequence and intensity of the applied stresses.

2006 ◽  
Vol 72 (4) ◽  
pp. 2829-2836 ◽  
Author(s):  
Shawn M. D. Bearson ◽  
Bradley L. Bearson ◽  
Mark A. Rasmussen

ABSTRACT Since the stomach is a first line of defense for the host against ingested microorganisms, an ex vivo swine stomach contents (SSC) assay was developed to search for genes important for Salmonella enterica serovar Typhimurium survival in the hostile gastric environment. Initial characterization of the SSC assay (pH 3.87) using previously identified, acid-sensitive serovar Typhimurium mutants revealed a 10-fold decrease in survival for a phoP mutant following 20 min of challenge and no survival for mutants of rpoS or fur. To identify additional genes, a signature-tagged mutagenesis bank was constructed and screened in the SSC assay. Nineteen mutants were identified and individually analyzed in the SSC and acid tolerance response assays; 13 mutants exhibited a 10-fold or greater sensitivity in the SSC assay compared to the wild-type strain, but only 3 mutants displayed a 10-fold or greater decrease in survival following pH 3.0 acidic challenge. Further examination determined that the lethal effects of the SSC are pH dependent but that low pH is not the sole killing mechanism(s). Gas chromatography analysis of the SSC revealed lactic acid levels of 126 mM. Upon investigating the effects of lactic acid on serovar Typhimurium survival in a synthetic gastric fluid, not only was a concentration- and time-dependent lethal effect observed, but the phoP, rpoS, fur, and pnp genes were identified as involved in protection against lactic acid exposure. These studies indicate a role in gastric survival for several serovar Typhimurium genes and imply that the stomach environment is defined by more than low pH.


2003 ◽  
Vol 66 (5) ◽  
pp. 732-740 ◽  
Author(s):  
R. T. BACON ◽  
J. N. SOFOS ◽  
P. A. KENDALL ◽  
K. E. BELK ◽  
G. C. SMITH

This study compared acid resistance levels among five antimicrobial-susceptible strains of Salmonella and five strains that were simultaneously resistant to a minimum of six antimicrobial agents. The induction of a stationary-phase acid tolerance response (ATR) was attempted by both transient low-pH acid shock and acid adaptation. For acid shock induction, strains were grown for 18 h in minimal E medium containing 0.4% glucose (EG medium) and exposed to sublethal acid stress (pH 4.3) for 2 h, and subsequently, both shocked and nonshocked cultures were acid challenged (pH 3.0) for 4 h. Acid adaptation was achieved by growing strains for 18 h in tryptic soy broth containing 1.0% glucose (TSB+G), while nonadapted cultures were grown for 18 h in glucose-free tryptic soy broth (TSB−G). Acid-adapted and nonadapted inocula were acid challenged (pH 2.3) for 4 h. Initial (0 h) mean populations of nonchallenged Salmonella were 8.5 to 8.7, 8.4 to 8.8, and 8.2 to 8.3 log CFU/ml for strains grown in EG medium, TSB−G, and TSB+G, respectively. After 4 h of acid challenge, mean populations were 3.0 to 4.8 and 2.5 to 3.7 log CFU/ml for previously acid-shocked susceptible and resistant strains, respectively, while corresponding counts for nonshocked strains were 4.3 to 5.5 log CFU/ml and 3.9 to 4.9 log CFU/ml. Following 4 h of acid exposure, acid-adapted cultures of susceptible and resistant strains had mean populations of 6.1 to 6.4 log CFU/ml and 6.4 to 6.6 log CFU/ml, respectively, while corresponding counts for nonadapted cultures were 1.9 to 2.1 log CFU/ml and 1.8 to 2.0 log CFU/ml, respectively. A low-pH–inducible ATR was not achieved through transient acid shock, while an ATR was evident following acid adaptation, as adapted populations were 4.2 to 4.8 log units larger than nonadapted populations following acid exposure. Although some strain-dependent variations in acid resistance were observed, results from this study suggest no association between susceptibility to antimicrobial agents and the ability of the Salmonella strains evaluated to survive low-pH stress.


2006 ◽  
Vol 188 (3) ◽  
pp. 834-841 ◽  
Author(s):  
Ann R. Griswold ◽  
Max Jameson-Lee ◽  
Robert A. Burne

ABSTRACT We previously demonstrated that Streptococcus mutans expresses a functional agmatine deiminase system (AgDS) encoded by the agmatine-inducible aguBDAC operon (A. R. Griswold, Y. Y. Chen, and R. A. Burne, J. Bacteriol. 186:1902-1904, 2004). The AgDS yields ammonia, CO2, and ATP while converting agmatine to putrescine and is proposed to augment the acid resistance properties and pathogenic potential of S. mutans. To initiate a study of agu gene regulation, the aguB transcription initiation site was identified by primer extension and a putative σ70-like promoter was mapped 5′ to aguB. Analysis of the genome database revealed an open reading frame (SMU.261c) encoding a putative transcriptional regulator located 239 bases upstream of aguB. Inactivation of SMU.261c decreased AgD activity by sevenfold and eliminated agmatine induction. AgD was also found to be induced by certain environmental stresses, including low pH and heat, implying that the AgDS may also be a part of a general stress response pathway of this organism. Interestingly, an AgDS-deficient strain was unable to grow in the presence of 20 mM agmatine, suggesting that the AgDS converts a growth-inhibitory substance into products that can enhance acid tolerance and contribute to the competitive fitness of the organism at low pH. The capacity to detoxify and catabolize agmatine is likely to have major ramifications on oral biofilm ecology.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Xingqun Cheng ◽  
Sylvio Redanz ◽  
Nyssa Cullin ◽  
Xuedong Zhou ◽  
Xin Xu ◽  
...  

ABSTRACTCommensalStreptococcus sanguinisandStreptococcus gordoniiare pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H2O2, which is crucial for inhibiting competing biofilm members, especially the cariogenic speciesStreptococcus mutans. H2O2production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H2O2production byS. sanguinisandS. gordonii.S. sanguinisH2O2production was not found to be affected by moderate changes in environmental pH, whereasS. gordoniiH2O2production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H2O2or lactic acid production, revealed increased lactic acid levels forS. gordoniiat pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival ofS. gordoniiat low pH and seems to constitute part of the acid tolerance response ofS. gordonii. Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H2O2.IMPORTANCEOral biofilms are subject to frequent and dramatic changes in pH.S. sanguinisandS. gordoniican compete with caries- and periodontitis-associated pathogens by generating H2O2. Therefore, it is crucial to understand howS. sanguinisandS. gordoniiadapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival, while others maintain their H2O2production at a constant level. The differential control of H2O2production provides important insights into the role of environmental conditions for growth competition of the oral flora.


2003 ◽  
Vol 69 (7) ◽  
pp. 3945-3951 ◽  
Author(s):  
E. J. Greenacre ◽  
T. F. Brocklehurst ◽  
C. R. Waspe ◽  
D. R. Wilson ◽  
P. D. G. Wilson

ABSTRACT An acid tolerance response (ATR) has been demonstrated in Listeria monocytogenes and Salmonella enterica serovar Typhimurium in response to low pH poised (i.e., adapted) with acetic or lactic acids at 20°C and modeled by using dynamic differential equations. The ATR was not immediate or prolonged, and optimization occurred after exposure of L. monocytogenes for 3 h at pH 5.5 poised with acetic acid and for 2 h at pH 5.5 poised with lactic acid and after exposure of S. enterica serovar Typhimurium for 2 h at pH 5.5 poised with acetic acid and for 3 h at pH 5.5 poised with lactic acid. An objective mechanistic analysis of the acid inactivation data yielded estimates of the duration of the shoulder (t s ), the log-linear decline (k max), and the magnitude of a critical component (C). The magnitude of k max gave the best agreement with estimates of conditions for optimum ATR induction made from the raw data.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Tom J. Overbeck ◽  
Dennis L. Welker ◽  
Joanne E. Hughes ◽  
James L. Steele ◽  
Jeff R. Broadbent

ABSTRACT This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei. MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation.


Jurnal MIPA ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 20 ◽  
Author(s):  
Kevin V. Bawole ◽  
Stella D. Umboh ◽  
Trina E. Tallei

Probiotik merupakan mikroorganisme hidup yang jika dikonsumsi dalam jumlah yang tepat dapat memberikan manfaat bagi tubuh. Sebagian besar bakteri asam laktat merupakan bakteri probiotik. Untuk dapat memberikan manfaat yang maksimal bagi tubuh, salah satu kriteria yang harus dipenuhi yaitu mampu bertahan hidup pada kondisi pH yang rendah. Hal ini dikarenakan bakteri probiotik akan menghadapi kondisi pH rendah yang terdapat di lambung. Penelitian ini bertujuan untuk menguji kemampuan isolat BAL hasil fermentasi kubis merah untuk bertahan hidup pada pH 3. Bakteri asam laktat ditumbuhkan pada media MRS agar yang ditambahkan 1% CaCO3 dengan menggunakan metode sebar (spread) dan dimurnikan menggunakan metode gores (streak). Uji ketahanan asam dilakukan dengan cara isolat diinkubasi pada kondisi pH 3 dalam media NB kemudian ditumbuhkan kembali pada media NA dengan menggunakan metode spread. Uji dilakukan juga untuk mengamati aktivitas enzim katalase. Hasil penelitian menunjukkan bahwa isolat yang diperoleh dari hasil fermentasi kubis merah mampu bertahan pada pH 3.Probiotics is a livinng microorganism that if consumed in the right amount can provide  benefits to the body. Most lactic acid bacteria are probiotic bacteria. To be able to provide maximum benefits for the body, one of the criteria that must be met is able to survive at low pH. This is because probiotic bacteria will face low pH conditions found in the stomach. This study aims to test the effectiveness of BAL isolates from red cabbage fermentation to survie at pH 3.  Lactic acid bacteria grown on MRSA media added 1% CaCO3 by using spread method and purified by using streak method. The acid resistance test was performed by isolate incubated at pH 3 condition in NB medium by using spread method. Test were also conducted to observe the activity of catalase enzymes. The result showed that isolates obtained from red cabbage fermentation were able to survive at pH 3.


2014 ◽  
Vol 80 (11) ◽  
pp. 3488-3495 ◽  
Author(s):  
Minetaka Sugiyama ◽  
Shin-Pei Akase ◽  
Ryota Nakanishi ◽  
Hitoshi Horie ◽  
Yoshinobu Kaneko ◽  
...  

ABSTRACTImprovement of the lactic acid resistance of the yeastSaccharomyces cerevisiaeis important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened forS. cerevisiaegenes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genesYGP1,GPG1, andSPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin geneMSN5led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast.


1996 ◽  
Vol 59 (9) ◽  
pp. 1003-1006 ◽  
Author(s):  
AMECHI OKEREKE ◽  
STERLING S. THOMPSON

The presence of an inducible acid-tolerance response (ATR) in Listeria monocytogenes Scott A was established. Protection of cells with induced ATR against nisin-mediated inhibition and stress was also evaluated. ATR was induced in L. monocytogenes Scott A by culturing in brain heart infusion (BHI) broth buffered to pH 5.4. The unadapted cells were grown at pH 7.2. Both acid-adapted and unadapted cells were challenged at pH 3.3 and 4.3 at 35°C. The acid-adapted cells were 150- to 7,500-fold more resistant to acid stress at pH 3.3 than unadapted cells. Both cells were equally resistant to acid stress at pH 4.3. The acid-adapted and unadapted cells were exposed to 0, 0.3, 0.6, 1.2 and 1.5 μg of nisin per ml of buffered BHI broth at pH 6.0 for 90 min at 35°C. Cells with the induced acid-resistance trait were slightly more resistant to nisin than the unadapted cells. In the presence of 1.5 μg of nisin per ml, 47% of the acid-adapted cells survived compared to 41% of the unadapted cells. In the range of nisin concentration included in this study, there was no significant (P < 0.05) difference in the nisin resistance of adapted and unadapted cells. The data suggest that ATR induction confers very limited cross protection against nisin stress and kill.


Sign in / Sign up

Export Citation Format

Share Document