scholarly journals Regulation and Physiologic Significance of the Agmatine Deiminase System of Streptococcus mutans UA159

2006 ◽  
Vol 188 (3) ◽  
pp. 834-841 ◽  
Author(s):  
Ann R. Griswold ◽  
Max Jameson-Lee ◽  
Robert A. Burne

ABSTRACT We previously demonstrated that Streptococcus mutans expresses a functional agmatine deiminase system (AgDS) encoded by the agmatine-inducible aguBDAC operon (A. R. Griswold, Y. Y. Chen, and R. A. Burne, J. Bacteriol. 186:1902-1904, 2004). The AgDS yields ammonia, CO2, and ATP while converting agmatine to putrescine and is proposed to augment the acid resistance properties and pathogenic potential of S. mutans. To initiate a study of agu gene regulation, the aguB transcription initiation site was identified by primer extension and a putative σ70-like promoter was mapped 5′ to aguB. Analysis of the genome database revealed an open reading frame (SMU.261c) encoding a putative transcriptional regulator located 239 bases upstream of aguB. Inactivation of SMU.261c decreased AgD activity by sevenfold and eliminated agmatine induction. AgD was also found to be induced by certain environmental stresses, including low pH and heat, implying that the AgDS may also be a part of a general stress response pathway of this organism. Interestingly, an AgDS-deficient strain was unable to grow in the presence of 20 mM agmatine, suggesting that the AgDS converts a growth-inhibitory substance into products that can enhance acid tolerance and contribute to the competitive fitness of the organism at low pH. The capacity to detoxify and catabolize agmatine is likely to have major ramifications on oral biofilm ecology.

2004 ◽  
Vol 186 (6) ◽  
pp. 1902-1904 ◽  
Author(s):  
Ann R. Griswold ◽  
Yi-Ywan M. Chen ◽  
Robert A. Burne

ABSTRACT An operon encoding enzymes of the agmatine deiminase system (AgDS) has been identified in the cariogenic bacterium Streptococcus mutans UA159. The AgDS is regulated by agmatine induction and carbohydrate catabolite repression. Ammonia is produced from agmatine at low pH, suggesting that the AgDS could augment acid tolerance.


2009 ◽  
Vol 75 (9) ◽  
pp. 2629-2637 ◽  
Author(s):  
Yaling Liu ◽  
Lin Zeng ◽  
Robert A. Burne

ABSTRACT Acidic conditions and the presence of exogenous agmatine are required to achieve maximal expression of the agmatine deiminase system (AgDS) of Streptococcus mutans. Here we demonstrate that the transcriptional activator of the AgDS, AguR, is required for the responses to agmatine and to low pH. Linker scanning mutagenesis was used to create a panel of mutated aguR genes that were utilized to complement an aguR deletion mutant of S. mutans. The level of production of the mutant proteins was shown to be comparable to that of the wild-type AguR protein. Mutations in the predicted DNA binding domain of AguR eliminated activation of the agu operon. Insertions into the region connecting the DNA binding domain to the predicted extracellular and transmembrane domains were well tolerated. In contrast, a variety of mutants were isolated that had a diminished capacity to respond to low pH but retained the ability to activate AgDS gene expression in response to agmatine, and vice versa. Also, a number of mutants were unable to respond to either agmatine or low pH. AguD, which is a predicted agmatine-putrescine antiporter, was found to be a negative regulator of AgDS gene expression in the absence of exogenous agmatine but was not required for low-pH induction of the AgDS genes. This study reveals that the control of AgDS gene expression by both agmatine and low pH is coordinated through the AguR protein and begins to identify domains of the protein involved in sensing and signaling.


2000 ◽  
Vol 68 (2) ◽  
pp. 543-549 ◽  
Author(s):  
J. D. Hillman ◽  
T. A. Brooks ◽  
S. M. Michalek ◽  
C. C. Harmon ◽  
J. L. Snoep ◽  
...  

ABSTRACT An effector strain has been constructed for use in the replacement therapy of dental caries. Recombinant DNA methods were used to make theStreptococcus mutans supercolonizing strain, JH1140, lactate dehydrogenase deficient by deleting virtually all of theldh open reading frame (ORF). To compensate for the resulting metabolic imbalance, a supplemental alcohol dehydrogenase activity was introduced by substituting the adhB ORF fromZymomonas mobilis in place of the deleted ldhORF. The resulting clone, BCS3-L1, was found to produce no detectable lactic acid during growth on a variety of carbon sources, and it produced significantly less total acid due to its increased production of ethanol and acetoin. BCS3-L1 was significantly less cariogenic than JH1140 in both gnotobiotic- and conventional-rodent models. It colonized the teeth of conventional rats as well as JH1140 in both aggressive-displacement and preemptive-colonization models. No gross or microscopic abnormalities of major organs were associated with oral colonization of rats with BCS3-L1 for 6 months. Acid-producing revertants of BCS3-L1 were not observed in samples taken from infected animals (reversion frequency, <10−3) or by screening cultures grown in vitro, where no revertants were observed among 105 colonies examined on pH indicator medium. The reduced pathogenic potential of BCS3-L1, its strong colonization potential, and its genetic stability suggest that this strain is well suited to serve as an effector strain in the replacement therapy of dental caries in humans.


2003 ◽  
Vol 66 (5) ◽  
pp. 732-740 ◽  
Author(s):  
R. T. BACON ◽  
J. N. SOFOS ◽  
P. A. KENDALL ◽  
K. E. BELK ◽  
G. C. SMITH

This study compared acid resistance levels among five antimicrobial-susceptible strains of Salmonella and five strains that were simultaneously resistant to a minimum of six antimicrobial agents. The induction of a stationary-phase acid tolerance response (ATR) was attempted by both transient low-pH acid shock and acid adaptation. For acid shock induction, strains were grown for 18 h in minimal E medium containing 0.4% glucose (EG medium) and exposed to sublethal acid stress (pH 4.3) for 2 h, and subsequently, both shocked and nonshocked cultures were acid challenged (pH 3.0) for 4 h. Acid adaptation was achieved by growing strains for 18 h in tryptic soy broth containing 1.0% glucose (TSB+G), while nonadapted cultures were grown for 18 h in glucose-free tryptic soy broth (TSB−G). Acid-adapted and nonadapted inocula were acid challenged (pH 2.3) for 4 h. Initial (0 h) mean populations of nonchallenged Salmonella were 8.5 to 8.7, 8.4 to 8.8, and 8.2 to 8.3 log CFU/ml for strains grown in EG medium, TSB−G, and TSB+G, respectively. After 4 h of acid challenge, mean populations were 3.0 to 4.8 and 2.5 to 3.7 log CFU/ml for previously acid-shocked susceptible and resistant strains, respectively, while corresponding counts for nonshocked strains were 4.3 to 5.5 log CFU/ml and 3.9 to 4.9 log CFU/ml. Following 4 h of acid exposure, acid-adapted cultures of susceptible and resistant strains had mean populations of 6.1 to 6.4 log CFU/ml and 6.4 to 6.6 log CFU/ml, respectively, while corresponding counts for nonadapted cultures were 1.9 to 2.1 log CFU/ml and 1.8 to 2.0 log CFU/ml, respectively. A low-pH–inducible ATR was not achieved through transient acid shock, while an ATR was evident following acid adaptation, as adapted populations were 4.2 to 4.8 log units larger than nonadapted populations following acid exposure. Although some strain-dependent variations in acid resistance were observed, results from this study suggest no association between susceptibility to antimicrobial agents and the ability of the Salmonella strains evaluated to survive low-pH stress.


2009 ◽  
Vol 191 (23) ◽  
pp. 7363-7366 ◽  
Author(s):  
Yaling Liu ◽  
Robert A. Burne

ABSTRACT Induction of the agmatine deiminase system (AgDS) of Streptococcus mutans requires agmatine and is optimal at low pH. We show here that the VicRK, ComDE, and CiaRH two-component systems influence AgDS gene expression in response to acidic and thermal stresses.


1984 ◽  
Vol 4 (11) ◽  
pp. 2321-2331
Author(s):  
L J Field ◽  
W M Philbrick ◽  
P N Howles ◽  
D P Dickinson ◽  
R A McGowan ◽  
...  

All inbred strains of mice carry the Ren-1 structural gene, which encodes the renin-1 isozyme, the classical renin activity found in kidneys. In addition, some strains carry a second renin structural gene, Ren-2, which encodes the predominantly expressed submaxillary gland renin isozyme, renin-2. Ren-1 and Ren-2 exhibit markedly different patterns of tissue-specific expression. In an effort to understand the molecular basis for this differential expression, detailed analysis of the genomic sequences corresponding to the Ren-1 and Ren-2 genes, and the transcripts originating from these loci, was undertaken. Sequence analysis of regions proximal to the structural genes indicated the presence of eucaryotic consensus sequences for transcription. These sequence motifs were strongly conserved between Ren-1 and Ren-2. Approximately 150 bases upstream from the major transcription initiation site, significant differences between these genes were apparent, including the presence of a repetitive DNA element in the Ren-2 copy as well as other breaks in homology and sequence curiosities. Strong homology between Ren-1 and Ren-2 resumed at a point ca. 200 bases further upstream on Ren-1. S1 analysis of submaxillary gland and kidney RNA populations indicated that the majority of transcripts initiate at homologous positions on Ren-1 and Ren-2. On a per cell basis, the accumulation of Ren-1 transcripts in the kidney and Ren-2 transcripts in the submaxillary gland are probably equivalent. These results suggest that it is tissue-specific utilization of the homologous start sites that is critical to their differential patterns of expression. Models which can account for this observation are presented. Interestingly, we found a minor fraction of transcripts initiating 5' to the major transcription start site. These transcripts encoded an open reading frame which may add an additional 23 amino acids to the N-terminus of the renin precursor.


2009 ◽  
Vol 72 (7) ◽  
pp. 1412-1418 ◽  
Author(s):  
PANAGIOTIS N. SKANDAMIS ◽  
JARRET D. STOPFORTH ◽  
YOHAN YOON ◽  
PATRICIA A. KENDALL ◽  
JOHN N. SOFOS

This study aimed to evaluate the effects of the level and sequence of hurdles, applied during growth, on the subsequent heat and acid tolerances of a 10-strain composite of Listeria monocytogenes. Individual strains were grown in glucose-free tryptic soy broth with 0.6% yeast extract (TSBYE–G). Then cultures were mixed and inoculated in fresh TSBYE–G (0.5% NaCl, pH 7.42; control), TSBYE–G that was supplemented with 3% NaCl (3.5% NaCl in total), or TSBYE–G with pH adjusted to 6.01 or 5.04 with lactic acid and incubated at 30°C for 24 h. Furthermore, the culture composite was exposed to the following five combinations of double sequential hurdles (12 h in each at 30°C): NaCl then pH 6.01, NaCl then pH 5.04, pH 7.42 then NaCl, pH 5.04 then NaCl, and pH 6.01 then NaCl. The heat and acid tolerances of the culture were assessed at 57°C (for 2 h) and at pH 3.5 (for 7 h), respectively, in TSBYE–G. No significant (P ≥ 0.05) differences in thermotolerance were observed among cultures exposed to various stresses. In contrast, the acid resistance followed the order: pH 6.01 = NaCl &gt; NaCl then pH 5.04 &gt; pH 6.01 then NaCl = pH 5.04 &gt; pH 5.04 then NaCl &gt; pH 7.42 then NaCl &gt; control. The results suggest that exposure of L. monocytogenes to NaCl and low pH during growth may not affect its heat (57°C) tolerance, but it may increase its acid (pH 3.5) resistance, depending on the sequence and intensity of the applied stresses.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1339-1351 ◽  
Author(s):  
Alice C. L. Len ◽  
Derek W. S. Harty ◽  
Nicholas A. Jacques

Streptococcus mutans is an important pathogen in the initiation of dental caries as the bacterium remains metabolically active when the environment becomes acidic. The mechanisms underlying this ability to survive and proliferate at low pH remain an area of intense investigation. Differential two-dimensional electrophoretic proteome analysis of S. mutans grown at steady state in continuous culture at pH 7·0 or pH 5·0 enabled the resolution of 199 cellular and extracellular protein spots with altered levels of expression. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 167 of these protein spots. Sixty-one were associated with stress-responsive pathways involved in DNA replication, transcription, translation, protein folding and proteolysis. The 61 protein spots represented isoforms or cleavage products of 30 different proteins, of which 25 were either upregulated or uniquely expressed during acid-tolerant growth at pH 5·0. Among the unique and upregulated proteins were five that have not been previously identified as being associated with acid tolerance in S. mutans and/or which have not been studied in any detail in oral streptococci. These were the single-stranded DNA-binding protein, Ssb, the transcription elongation factor, GreA, the RNA exonuclease, polyribonucleotide nucleotidyltransferase (PnpA), and two proteinases, the ATP-binding subunit, ClpL, of the Clp family of proteinases and a proteinase encoded by the pep gene family with properties similar to the dipeptidase, PepD, of Lactobacillus helveticus. The identification of these and other differentially expressed proteins associated with an acid-tolerant-growth phenotype provides new information on targets for mutagenic studies that will allow the future assessment of their physiological significance in the survival and proliferation of S. mutans in low pH environments.


2005 ◽  
Vol 86 (3) ◽  
pp. 561-574 ◽  
Author(s):  
Heather M. Coleman ◽  
Stacey Efstathiou ◽  
Philip G. Stevenson

Gammaherpesviruses persist as latent episomes in a dynamic lymphocyte pool. The regulated production of an episome maintenance protein is therefore crucial to their survival. The transcription initiation site of the murine gammaherpesvirus 68 episome maintenance protein, ORF73, was mapped to the viral terminal repeats, more than 10 kb distant from the open reading frame (ORF) itself. A 5′ non-coding exon in the terminal repeats was spliced to the right end of the viral unique sequence, and then across ORFs 75a, 75b, 75c and 74 to ORF73. The right-hand portion of a single repeat unit was sufficient for constitutive promoter activity. The unique left end of the viral genome further enhanced ORF73 transcription. This, together with the large size of the predominant ORF73 mRNA, suggested that transcription initiates in distal repeat units and then splices between repeats to generate an extensive 5′ untranslated region. A second promoter in the left-hand portion of the proximal terminal repeat unit generated a transcript which overlapped that of ORF73, but failed to splice to the ORF73 coding exon and so transcribed ORF75a. In distal repeat copies, however, transcription from this promoter would enter the next repeat unit to become an ORF73 mRNA. There was a third promoter just upstream of ORF73 itself. These data indicate that ORF73 transcription is highly complex, and support the idea that the terminal repeats of gamma-2-herpesviruses constitute a vital component of episomal persistence.


1990 ◽  
Vol 172 (2) ◽  
pp. 609-620 ◽  
Author(s):  
T J Vasicek ◽  
P Leder

We determined the DNA sequence of two large regions of chromosome 22: 33.7 kb containing the C lambda complex; and 5.2 kb 5' of the functionally rearranged lambda gene from the human myeloma, U266. Analysis of these sequences reveals the complete structure of the human C lambda complex and a previously undescribed seventh C lambda region that may encode the Ke+Oz- lambda protein. The seven constant regions are organized in a tandem array, and each is preceded by a single J lambda region. lambda 1, lambda 2, lambda 3, and lambda 7 are apparently active genes, while lambda 4, lambda 5, and lambda 6 are pseudogenes. There are no other J lambda or C lambda regions within a 60-kb region surrounding the C lambda complex; however, there are at least four other lambda-like genes and lambda pseudogenes in the human genome. The lambda genes appear to have evolved via a series of gene duplication events resulting from unequal crossing over or gene conversion between the highly conserved C lambda regions on mispaired chromosomes. The lack of Alu sequences in this large segment of DNA suggests that the C lambda complex resulted from a recent amplification of a smaller Alu-free segment of DNA. Illegitimate recombination between repeated sequences containing lambda 2 and lambda 3 may be responsible for variable amplification of the lambda genes. We also found a 1,377-bp open reading frame (ORF) located on the opposite strand in the region containing lambda 7. While this ORF is flanked by potential RNA splicing signals, we have no evidence that it is part of a functional gene. We also discovered a V lambda pseudogene, called psi V lambda 1, 3 kb upstream of the U266 lambda gene. Using primer extension analysis to map the transcription start in the human lambda gene, we have identified its initiation point 41 bp upstream of the initiation codon. Analysis of the lambda promoter reveals that it contains a TATAA box at position -29 relative to the transcription initiation site and an octamer sequence at -67. Computer analysis of 40 kb of DNA sequences surrounding the human lambda locus has revealed no sequences resembling the kappa or IgH transcriptional enhancers, nor have in vitro analyses for function revealed enhancer activity. A comparison of these results with those obtained in separate studies with transgenic mice point to a complex, developmentally linked mechanism of transcriptional activation.


Sign in / Sign up

Export Citation Format

Share Document