Automated Dead-End Ultrafiltration for Concentration and Recovery of Total Coliform Bacteria and Laboratory-Spiked Escherichia coli O157:H7 from 50-Liter Produce Washes To Enhance Detection by an Electrochemiluminescence Immunoassay

2013 ◽  
Vol 76 (7) ◽  
pp. 1152-1160 ◽  
Author(s):  
SONIA MAGAÑA ◽  
SARAH M. SCHLEMMER ◽  
STEPHANEY D. LESKINEN ◽  
ELIZABETH A. KEARNS ◽  
DANIEL V. LIM

An automated concentration system (ACS) based on dead-end ultrafiltration was used in this study to concentrate bacteria, including Escherichia coli O157:H7, from 50-liter produce washes (PWs, sieved produce wash). Cells trapped in the filters were recovered in approximately 400 ml of buffer to create PW retentates (PWRs). Extent of concentration was determined by analyzing PWs and PWRs for total coliform bacteria and E. coli O157:H7 using standard methods. In addition, an electrochemiluminescence immunoassay was evaluated for detection of E. coli O157:H7 in spiked PWs and PWRs to demonstrate usefulness of the ACS for same-day detection. The levels of total coliform bacteria and E. coli O157:H7 in PWRs were higher than those in PWs by 1.85± 0.41 log most probable number per 100 ml and 1.82 ± 0.24 log CFU/ml, respectively. Electrochemiluminescence detection of E. coli O157:H7 was accomplished within 2 h using ACS concentration of lettuce and spinach wash water artificially spiked with the pathogen at levels as low as 0.36 log CFU/ml and 1.39 log CFU/ml, respectively. Detection of E. coli O157:H7 at −0.93 ± 0.15 log CFU/ml in lettuce wash occurred within approximately 6 h when a 4-h enrichment step was added to the procedure. Use of dead-end ultrafiltration increased bacterial concentrations in PWR and allowed same-day detection of low levels of E. coli O157:H7 in PW. This concentration system could be useful to improve the sensitivity of current rapid methods for detection of low levels of foodborne pathogens in PW water.

1994 ◽  
Vol 77 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Philip T Feldsine ◽  
Maria T Falbo-Nelson ◽  
David L Hustead

Abstract The ColiComplete® substrate-supporting disc (SSD) method for simultaneous confirmed total coliform count and Escherichia coli determination in all foods was compared with the AOAC most probable number (MPN) methods 966.23 and 966.24. In this comparative study, 20 water and food types were analyzed; 7 of these foods were naturally contaminated with coliform bacteria, 6 food types were naturally contaminated with E. coli, and the remaining foods were inoculated with coliform bacteria and/or E. coli. Data were analyzed separately for total coliform bacteria and for E. coli. Mean log MPN counts were determined by the SSD method and the appropriate AOAC MPN procedure. Results were then analyzed for mean log MPN differences and variance, according to methods described by AOAC INTERNATIONAL Results for both total conforms and E. coli indicate that the SSD method is equivalent to or better than AOAC MPN methods 966.23 and 966.24.


2019 ◽  
Vol 2 (2) ◽  
pp. a13-19
Author(s):  
ELEXSON NILLIAN ◽  
AMIZA NUR ◽  
DIYANA NUR ◽  
AMIRAH ZAKIRAH ◽  
GRACE BEBEY

Contamination of drinks with E. coli O157:H7 served in food premises such as restaurants can cause haemorrhagic colitis and haemolytic uremic syndrome to humans. The presence or absence of faecal pathogen was demonstrated using coliform group as indicator microorganisms. Therefore, this study was conducted to detect the presence of E. coli O157:H7 in drinking water from food restaurant premise in Kota Samarahan and Kuching to ensure safe and potable drinking water is served to the consumer. A total of thirty (n=30) drink samples including six types of each of the samples are cold plain water, iced tea, iced milo, syrup and iced milk tea. Most Probable Number (MPN) procedure was used in this study to enumerate the MPN values of coliform bacteria in each drink collected. A total of 53.33% (16/30) of the drink samples showed positive E. coli detection. Then, the PCR assay showed 6.25% (one out of 16 isolates) samples were positive and carried stx1 gene produced by E. coli O157:H7 in iced milo sample types. This study showed the drinks collected from food premises was contaminated with faecal contamination, which was not safe to drink by the consumer. Therefore, preventive actions should be taken to prevent foodborne illness outbreak in future


2019 ◽  
Vol 65 (2) ◽  
pp. 23-32
Author(s):  
Marta Nedelkova ◽  
Angela Delova ◽  
Tanja Petreska Ivanovska ◽  
Zoran Zhivikj ◽  
Lidija Petrushevska-Tozi

The aim of this paper is to analyze the presence of Escherichia coli (E. coli) and total coliform bacteria (CB) in the drinking water of urban and rural areas of the Bitola region, as indicators for water quality and safety. All water in urban area is chlorinated, while at the same time the water in rural areas is non-chlorinated. The samples were analyzed according to the international standard method of membrane filtration MKC EN ISO 9308-1:2015. In all examined samples of drinking water in urban area, presence of E. coli and CB was not detected as a result of the disinfection of the water. On contrary, in all tested samples of the water from the rural water supply, presence of E. coli and CB was confirmed. Significant increase in coliform bacterial counts probably weather-related was found in the period from April to September. In addition, in the third quarter including July, August, and September, in many measurements, E. coli as an indicator of faecal contamination was identified in drinking water. In accordance with these findings and in order to provide safe drinking water, it is necessary to modernize the water supply for the population in rural areas, to disinfect permanently the drinking water and to apply regular laboratory controls which are a basic pre-condition. Otherwise, inappropriate management of the water systems can cause serious decrease in the quality and safety of the drinking water associated with an increased risk of appearance of the infectious diseases in people and hydric epidemic. Key words: drinking water, Escherichia coli, coliform bacteria, membrane filtration


2014 ◽  
Vol 77 (8) ◽  
pp. 1260-1268 ◽  
Author(s):  
SONIA MAGAÑA ◽  
SARAH M. SCHLEMMER ◽  
GORDON R. DAVIDSON ◽  
ELLIOT T. RYSER ◽  
DANIEL V. LIM

An automated dead-end (single pass, no recirculation) ultrafiltration device, the Portable Multi-use Automated Concentration System (PMACS), was evaluated as a means to concentrate Escherichia coli O157:H7 from 40 liters of simulated commercial lettuce wash water. The assessment included generating, sieving, and concentrating sanitizer-free lettuce wash water, either uninoculated or inoculated with green fluorescent protein–transformed E. coli O157:H7 at a high (1.00 log CFU/ml) or low (−1.00 log CFU/ml) concentration. Cells collected within the filters were recovered in approximately 400 ml of buffer to create lettuce wash retentates. The extent of concentration was determined by viable plate counts using a medium selective for the transformed E. coli O157:H7. The samples were qualitatively analyzed for E. coli O157:H7 according to the U.S. Food and Drug Administration Bacteriological Analytical Manual enrichment method and with an electrochemiluminescence immunoassay. This concentration method was then evaluated in a pilot-scale production line at Michigan State University using chlorinated (100, 30, and 10 ppm of available chlorine) lettuce wash water. The total PMACS processing times were 82 ±6 and 65 ±5 min for sanitizer-free and chlorinated washes, respectively. Overall, E. coli O157:H7 populations were approximately 2 log higher in retentates than in unconcentrated lettuce wash samples. The higher E. coli O157:H7 levels in the retentates enabled cultural and electrochemiluminescence immunoassay detection in some samples when the corresponding lettuce wash samples were negative. When combined with standard and rapid detection methods, the PMACS concentration method may provide a means to enhance pathogen monitoring of produce wash water.


2012 ◽  
Vol 75 (1) ◽  
pp. 132-136 ◽  
Author(s):  
JULIE A. KASE ◽  
STACEY BORENSTEIN ◽  
ROBERT J. BLODGETT ◽  
PETER C. H. FENG

Contamination with Escherichia coli O157:H7 and Salmonella have called into question the safety and microbial quality of bagged ready-to-eat leafy greens. This study expands on previous findings that these goods have high total bacteria counts (TBC) and coliform counts, variation in counts among different lots, that Escherichia coli is present, and disparities in counts when bags are top or bottom sampled. Nearly 100 bags of baby spinach and hearts of romaine lettuce from a single brand were subjected to both top and bottom sampling. Product was blended, and a portion serially diluted and plated to obtain TBC. Total coliform and E. coli levels were estimated by the most-probable-number (MPN) technique with ColiComplete discs. Top-sampled TBC from bags of baby spinach (48 bags, 13 different lots) ranged from 3.9 to 8.1 log CFU/g and bottom-sampled TBC ranged from 4.0 to 8.2 log CFU/g, with 52% of the bags (or 39% of the lots) producing TBC higher in bottom samples. For hearts of romaine (47 bags from 19 different lots), top-sampled bags had TBC ranging from 2.4 to 7.0 log, and bottom-sampled bags had TBC from 3.3 to 7.3 log, with 64% of the bags (or 63% of the lots) showing higher TBC in bottom samples. However, we are unable to reject the hypothesis that the top and bottom samples from either commodity contain the same TBC (P ≥ 0.08). No E. coli was detected and total coliform bacteria counts were, with few exceptions, ≥210 MPN/g, irrespective of TBC. In general, lots with the most number of days before the printed “use-by” date had lower TBC. However, the R2 values for either baby spinach (0.4085) or hearts of romaine (0.2946) suggest that age might not be a very good predictor of higher TBC. TBC varied widely between lots and even more so within same-lot samples, as indicated by the sum of squares results. This finding, along with higher TBC in bottom samples, suggests further consideration when a microbiological sampling scheme of bagged produce is designed.


1972 ◽  
Vol 35 (2) ◽  
pp. 67-70
Author(s):  
Jose de A. Moura Fé ◽  
F. Eugene Nelson

Estimates of populations of “total” coliform bacteria in raw mi1k were quantitatively essentially the same when Violet Red Bile agar incubated at 32 C and Lauryl Sulfate Tryptose Broth incubated at 37 C were used. Qualitatively, LST tended to favor recovery of a greater proportion of Aerobaoter aerogenes and IMViC-irregular types. Of the 46 isolates that produced ropiness, 35 were recovered from LST. Escherichia coli populations, as determined on EC medium incubated at 44.5 C, showed no constant relationship to total coliform population. Summer samples contained not only greater numbers of E. coli but also these organisms constituted a greater proportion of the coliform population.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2009 ◽  
Vol 75 (23) ◽  
pp. 7417-7425 ◽  
Author(s):  
H. N. Chinivasagam ◽  
T. Tran ◽  
L. Maddock ◽  
A. Gale ◽  
P. J. Blackall

ABSTRACT This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were ∼108 CFU g−1 and, as a consequence, were in the range of 102 to 104 CFU m−3 in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (103 to 105 most probable number [MPN] g−1) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m−3) and once outside (2.3 MPN m−3). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g−1. Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m−3. Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.


1995 ◽  
Vol 58 (1) ◽  
pp. 13-18 ◽  
Author(s):  
ERROL V. RAGHUBEER ◽  
JIM S. KE ◽  
MICHAEL L. CAMPBELL ◽  
RICHARD S. MEYER

Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli, and the non-fecal coliform Enterobacter aerogenes. Results showed that at the high inoculation level (&gt;106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.


2004 ◽  
Vol 67 (12) ◽  
pp. 2651-2656 ◽  
Author(s):  
P. McGEE ◽  
L. SCOTT ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157: H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.


Sign in / Sign up

Export Citation Format

Share Document