Prevalence and Genetic Characterization of Vibrio vulnificus in Raw Seafood and Seawater in Malaysia

2013 ◽  
Vol 76 (10) ◽  
pp. 1797-1800 ◽  
Author(s):  
MOHAMMADJAVAD PAYDAR ◽  
KWAI LIN THONG

Vibrio vulnificus is a highly invasive human pathogen that exists naturally in estuarine environment and coastal waters. In this study, we used different PCR assays to detect V. vulnificus in 260 seafood and 80 seawater samples. V. vulnificus was present in about 34 (13%) of the 260 seafood samples and 18 (23%) of the 80 seawater samples. Repetitive extragenic palindromic PCR (REP-PCR) and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) were applied to subtype the V. vulnificus isolates. Twenty-five REP profiles and 45 ERIC profiles were observed, and the isolates were categorized into 9 and 10 distinct clusters at the similarity of 80%, by REP-PCR and ERIC-PCR, respectively. ERIC-PCR is more discriminative than REP-PCR in subtyping V. vulnificus, demonstrating high genetic diversity among the isolates.

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Taveesak Janetanakit ◽  
Supassama Chaiyawong ◽  
Kamonpan Charoenkul ◽  
Ratanaporn Tangwangvivat ◽  
Ekkapat Chamsai ◽  
...  

Abstract Background Enterovirus G (EV-G) causes subclinical infections and is occasionally associated with diarrhea in pigs. In this study, we conducted a cross-sectional survey of EV-G in pigs from 73 pig farms in 20 provinces of Thailand from December 2014 to January 2018. Results Our results showed a high occurrence of EV-Gs which 71.6 % of fecal and intestinal samples (556/777) and 71.2 % of pig farms (52/73) were positive for EV-G by RT-PCR specific to the 5’UTR. EV-Gs could be detected in all age pig groups, and the percentage positivity was highest in the fattening group (89.7 %), followed by the nursery group (89.4 %). To characterize the viruses, 34 EV-G representatives were characterized by VP1 gene sequencing. Pairwise sequence comparison and phylogenetic analysis showed that Thai-EV-Gs belonged to the EV-G1, EV-G3, EV-G4, EV-G8, EV-G9 and EV-G10 genotypes, among which the EV-G3 was the predominant genotype in Thailand. Co-infection with different EV-G genotypes or with EV-Gs and porcine epidemic diarrhea virus (PEDV) or porcine deltacoronavirus (PDCoV) on the same pig farms was observed. Conclusions Our results confirmed that EV-G infection is endemic in Thailand, with a high genetic diversity of different genotypes. This study constitutes the first report of the genetic characterization of EV-GS in pigs in Thailand.


2018 ◽  
Author(s):  
Siyue Xiao ◽  
Yunheng Ji ◽  
Jian Liu ◽  
Xun Gong

Background Cycas panzhihuaensis L. Zhou & S. Y. Yang (Cycadaceae) is an endangered gymnosperm species endemic in the dry-hot valley of Jinsha River basin from southwest China. Although the wild C. panzhihuaensis population from Panzhihua Cycad Natural Reserve is well protected, other known populations that fall outside the natural reserve may preserve specific genetic resources while face with larger extinction risk because of lacking essential monitoring. Methods In this study, we analyzed the genetic diversity, phylogeographical structure and demographic history of C. panzhihuaensis from seven known locations so far by sequencing three chloroplastic DNA regions (psbA-trnH, psbM-trnD, and trnS-trnG), four single-copy nuclear genes (PHYP, AC5, HSP70, and AAT) from 61 individuals, and eleven microsatellite loci (SSR) from 102 individuals. Results and Discussion We found relative high genetic diversity within populations and high genetic differentiation among the populations of C. panzhihuaensis, which is similar with the other Asian inland cycads. Despite no significant phylogeographical structure was detected, small and unprotected populations possess higher genetic diversity and more unique haplotypes, which deserve due attention. Results of demographic dynamics suggest that human activity is the key factor that leads C. panzhihuaensis to endangered status. Basing on the genetic characterization of C. panzhihuaensis, we proposed several practical guidelines for the conservation of this species, especially for its small populations.


2010 ◽  
Vol 76 (14) ◽  
pp. 4890-4895 ◽  
Author(s):  
Zahid H. Mahmud ◽  
Anita C. Wright ◽  
Shankar C. Mandal ◽  
Jianli Dai ◽  
Melissa K. Jones ◽  
...  

ABSTRACT Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.


1998 ◽  
Vol 36 (2) ◽  
pp. 598-602 ◽  
Author(s):  
Adrienne W. Paton ◽  
James C. Paton

Shiga toxigenic Escherichia coli (STEC) comprises a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, certain strains appear to be of greater virulence for humans, for example, those belonging to serogroups O111 and O157 and those with particular combinations of other putative virulence traits. We have developed two multiplex PCR assays for the detection and genetic characterization of STEC in cultures of feces or foodstuffs. Assay 1 utilizes four PCR primer pairs and detects the presence of stx 1,stx 2 (including variants ofstx 2), eaeA, and enterohemorrhagicE. coli hlyA, generating amplification products of 180, 255, 384, and 534 bp, respectively. Assay 2 uses two primer pairs specific for portions of the rfb (O-antigen-encoding) regions of E. coli serotypes O157 and O111, generating PCR products of 259 and 406 bp, respectively. The two assays were validated by testing 52 previously characterized STEC strains and observing 100% agreement with previous results. Moreover, assay 2 did not give a false-positive O157 reaction with enteropathogenic E. colistrains belonging to clonally related serogroup O55. Assays 1 and 2 detected STEC of the appropriate genotype in primary fecal cultures from five patients with hemolytic-uremic syndrome and three with bloody diarrhea. Thirty-one other primary fecal cultures from patients without evidence of STEC infection were negative.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1894 ◽  
Author(s):  
Nikolett Sziszkosz ◽  
Sándor Mihók ◽  
András Jávor ◽  
Szilvia Kusza

The Gidran is a native Hungarian horse breed that has approached extinction several times. Phylogenetic analysis of two mitochondrial markers (D-loop and cytochrome-b) was performed to determine the genetic characterization of the Gidran for the first time as well as to detect errors in the management of the Gidran stud book. Sequencing of 686 bp ofCYTBand 202 bp of the D-loop in 260 mares revealed 24 and 32 haplotypes, respectively, among 31 mare families. BLAST analysis revealed six novelCYTBand four D-loop haplotypes that have not been previously reported. The Gidran mares showed high haplotype (CYTB: 0.8735 ± 0.011; D-loop: 0.9136 ± 0.008) and moderate nucleotide (CYTB: 0.00472 ± 0.00017; D-loop: 0.02091 ± 0.00068) diversity. Of the 31 Gidran mare families, only 15CYTB(48.4%) and 17 D-loop (54.8%) distinct haplotypes were formed using the two markers separately. Merged markers created 24 (77.4%) mare families, which were in agreement with the mare families in the stud book. Our key finding was that the Gidran breed still possesses high genetic diversity despite its history. The obtained haplotypes are mostly consistent with known mare families, particularly when the two mtDNA markers were merged. Our results could facilitate conservation efforts for preserving the genetic diversity of the Gidran.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Nina Wang ◽  
Lichao Yang ◽  
Guohui Li ◽  
Xu Zhang ◽  
Jianwei Shao ◽  
...  

Abstract Background Wenzhou virus (WENV), a newly discovered mammarenavirus in rodents, is associated with fever and respiratory symptoms in humans. This study was aimed to detect and characterize the emerging virus in rodents in Guangzhou, China. Results A total of 100 small mammals, including 70 Rattus norvegicus, 22 Suncus murinus, 4 Bandicota indica, 3 Rattus flavipectus, and 1 Rattus losea, were captured in Guangzhou, and their brain tissues were collected and pooled for metagenomic analysis, which generated several contigs targeting the genome of WENV. Two R. norvegicus (2.9%) were further confirmed to be infected with WENV by RT-PCR. The complete genome (RnGZ37-2018 and RnGZ40-2018) shared 85.1–88.9% nt and 83.2–96.3% aa sequence identities to the Cambodian strains that have been shown to be associated with human disease. Phylogenetic analysis showed that all identified WENV could be grouped into four different lineages, and the two Guangzhou strains formed an independent clade. We also analyzed the potential recombinant events occurring in WENV strains. Conclusions Our study showed a high genetic diversity of WENV strains in China, emphasizing the relevance of surveillance of this emerging mammarenavirus in both natural reservoirs and humans.


Sign in / Sign up

Export Citation Format

Share Document