Biotechnological Approach To Preserve Fresh Pasta Quality

2017 ◽  
Vol 80 (12) ◽  
pp. 2006-2013 ◽  
Author(s):  
L. Angiolillo ◽  
A. Conte ◽  
M. A. del Nobile

ABSTRACT Fresh pasta is highly susceptible to microbial contamination because of its high water activity and nutrient content. In this study, a new biopreservation system was examined that consists of an active sodium alginate solution containing Lactobacillus reuteri and glycerol, which was added during the production process of pasta. Our aim was to extend the fresh pasta shelf life by the in situ production of reuterin, thereby avoiding the use of thermal treatments that generally compromise food sensory characteristics. Two experimental studies were carried out with the product packaged under either ordinary or modified atmospheric conditions. Microbiological and sensory quality indices were monitored to determine the effectiveness of biopreservation on product quality during storage. The use of the active solution with L. reuteri and glycerol during the production process of pasta improved both microbial and sensory quality, particularly when combined with modified atmosphere.

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S9-S25 ◽  
Author(s):  
John Urquhart ◽  
Nancy Keller

ABSTRACT Two techniques for organ perfusion with blood are described which provide a basis for exploring metabolic or endocrine dynamics. The technique of in situ perfusion with autogenous arterial blood is suitable for glands or small organs which receive a small fraction of the animal's cardiac output; thus, test stimulatory or inhibitory substances can be added to the perfusing blood and undergo sufficient dilution in systemic blood after passage through the perfused organ so that recirculation does not compromise experimental control over test substance concentration in the perfusate. Experimental studies with the in situ perfused adrenal are described. The second technique, termed the pilot organ method, is suitable for organs which receive a large fraction of the cardiac output, such as the liver. Vascular connections are made between the circulation of an intact, anaesthetized large (> 30 kg) dog and the liver of a small (< 3 kg) dog. The small dog's liver (pilot liver) is excised and floated in a bath of canine ascites, and its venous effluent is continuously returned to the large dog. Test substances are infused into either the hepatic artery or portal vein of the pilot liver, but the small size of the pilot liver and its blood flow in relation to the large dog minimize recirculation effects. A number of functional parameters of the pilot liver are described.


2021 ◽  
Vol 64 (2) ◽  
pp. 68-70
Author(s):  
Satyajeet B. Chaudhari ◽  
Bharat H. Patel ◽  
Aadhar A. Mandot

Composite textiles consisting of metallic nanoparticles dispersed in textiles fabric have been prepared by the reduction of metal ion from its salt at room temperature under normal atmospheric conditions. Morphology and structures have been investigated by SEM. Spherical nanoparticles were found to be homogeneously dispersed in/on the polyester (PET) fiber and the particles were elementally analyzed by the XRF technique.


Author(s):  
Kathryn Elmer ◽  
Raymond Soffer ◽  
J. Pablo Arroyo-Mora ◽  
Margaret Kalacska

Over the past 30 years, the use of field spectroscopy has risen in importance in remote sensing studies for the characterization of the surface reflectance of materials in situ within a broad range of applications. Potential uses range from measurements of individual targets of interest (e.g. vegetation, soils, validation targets etc.), to characterizing the contributions of different materials within larger spatially-mixed areas as would be representative of the spatial resolution captured by a sensor pixel (UAV to satellite scale). As such, it is essential that a complete and rigorous assessment of both the data-acquisition procedures, and the suitability of the derived data product be carried out. The measured energy from solar-reflected range spectroradiometers is influenced by the viewing and illumination geometries and the illumination conditions which vary due to changes in solar position and atmospheric conditions. By applying corrections, the estimated absolute reflectance (Rabs) of targets can be calculated. This property is independent of illumination intensity or conditions and is the metric commonly suggested to be used to compare spectra even when data are collected by different sensors or acquired under different conditions. By standardizing the process of estimated Rabs, as is provided in the described toolkit, consistency and repeatability in processing are ensured and the otherwise labor intensive and error-prone processing steps are streamlined. The resultant end data product (Rabs) represents our best current effort to generate consistent and comparable ground spectra which have been corrected for viewing and illumination geometries as well as other factors such as the individual characteristics of the reference panel used during acquisition.


2021 ◽  
Vol 3 ◽  
Author(s):  
Andres Patrignani ◽  
Tyson E. Ochsner ◽  
Benjamin Montag ◽  
Steven Bellinger

During the past decade, cosmic-ray neutron sensing technology has enabled researchers to reveal soil moisture spatial patterns and to estimate landscape-average soil moisture for hydrological and agricultural applications. However, reliance on rare materials such as helium-3 increases the cost of cosmic-ray neutron probes (CRNPs) and limits the adoption of this unique technology beyond the realm of academic research. In this study, we evaluated a novel lower cost CRNP based on moderated ultra-thin lithium-6 foil (Li foil system) technology against a commercially-available CRNP based on BF3 (boron trifluoride, BF-3 system). The study was conducted in a cropped field located in the Konza Prairie Biological Station near Manhattan, Kansas, USA (325 m a.s.l.) from 10 April 2020 to 18 June 2020. During this period the mean atmospheric pressure was 977 kPa, the mean air relative humidity was 70%, and the average volumetric soil water content was 0.277 m3 m−3. Raw fast neutron counts were corrected for atmospheric pressure, atmospheric water vapor, and incoming neutron flux. Calibration of the CRNPs was conducted using four intensive field surveys (n &gt; 120), in combination with continuous observations from an existing array of in situ soil moisture sensors. The time series of uncorrected neutron counts of the Li foil system was highly correlated (r2 = 0.91) to that of the BF-3 system. The Li foil system had an average of 2,250 corrected neutron counts per hour with an uncertainty of 2.25%, values that are specific to the instrument size, detector configuration, and atmospheric conditions. The estimated volumetric water content from the Li foil system had a mean absolute difference of 0.022 m3 m−3 compared to the value from the array of in situ sensors. The new Li foil detector offers a promising lower cost alternative to existing cosmic-ray neutron detection devices used for hectometer-scale soil moisture monitoring.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marta de Alfonso ◽  
Jue Lin-Ye ◽  
José M. García-Valdecasas ◽  
Susana Pérez-Rubio ◽  
M. Yolanda Luna ◽  
...  

Storm Gloria, generated on January 17th, 2020 in the Eastern North Atlantic, crossed the Iberian Peninsula and impacted the Western Mediterranean during the following days. The event produced relevant damages on the coast and the infrastructures at the Catalan-Balearic Sea, due to extraordinary wind and wave fields, concomitant with anomalously intense rain and ocean currents. Puertos del Estado (the Spanish holding of harbors) has developed and operates a complex monitoring and forecasting system (PORTUS System), in collaboration with the Spanish Met Office (AEMET). The present work shows how Gloria was correctly forecasted by this system, alerts were properly issued (with special focus to the ports), and the buoys were able to monitor the sea state conditions during the event, measuring several new records of significant wave height and exceptional high mean wave periods. The paper describes, in detail, the dynamic evolution of the atmospheric conditions, and the sea state during the storm. It is by means of the study of both in situ and modeled PORTUS data, in combination with the AEMET weather forecast system results. The analysis also serves to place this storm in a historical context, showing the exceptional nature of the event, and to identify the specific reasons why its impact was particularly severe. The work also demonstrates the relevance of the PORTUS System to warn, in advance, the main Spanish Ports. It prevents accidents that could result in fatal casualties. To do so, the wave forecast warning performance is analyzed, making special focus on the skill score for the different horizons. Furthermore, it is demonstrated how a storm of this nature results in the need of changes on the extreme wave analysis for the area. It impacts all sorts of design activities at the coastline. The paper studies both how this storm fits into existing extreme analysis and how these should be modified in the light of this particular single event. This work is the first of a series of papers to be published on this issue. They analyze, in detail, other aspects of the event, including evolution of sea level and description of coastal damages.


Author(s):  
Henrik Svensmark ◽  
Jens Olaf P Pedersen ◽  
Nigel D Marsh ◽  
Martin B Enghoff ◽  
Ulrik I Uggerhøj

Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields nucleation rates of the order of 0.1–1 cm −3  s −1 . This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation.


1965 ◽  
Vol 2 (3) ◽  
pp. 188-215 ◽  
Author(s):  
J. A. Chamberlain ◽  
C. R. McLeod ◽  
R. J. Traill ◽  
G. R. Lachance

The following native metals have been identified in the Muskox intrusion: native iron, native nickel–iron (awaruite), native cobalt–iron (wairauite), and native copper. Mineral distributions and textures indicate that the native metals formed more or less contemporaneously, during the period of serpentinization of the host dunites and related rocks.Conditions during serpentinization must have been more reducing in the central and lower parts of the layered series than in the margins and upper parts of the intrusion. This is indicated by the fact that most native metals are abundant in the central regions and are essentially lacking elsewhere, even in strongly serpentinized zones. This zoning suggests that reducing conditions may have been generated internally, possibly as a result of the serpentinization process itself. The composition of the primary olivine of forsterite80–88 together with the presence of abundant secondary magnetite in equivalent serpentinites indicates that a redox reaction, olivine + water = serpentine + magnetite + hydrogen, contributed to the development of a progressively more reducing, or hydrogen-rich, fluid phase.Natural phase relations indicate that each native metal formed primarily in situ as a result of the decomposition of specific earlier formed minerals that had become unstable in the reducing environment. Native iron appears to have been formed by the reduction of magnetite; awaruite by the reduction of pentlandite; wairauite by the reduction of an unknown phase, possibly cobalt pentlandite or cobaltian pyrite; and native copper by the reduction of chalcopyrite. The feasibility of most of these reactions was confirmed by experimental studies carried out in systems open to moist hydrogen.


2021 ◽  
Author(s):  
Nhan Nu Hong Ton ◽  
Binh Khanh Mai ◽  
Thanh Vinh Nguyen

Abstract: Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross coupling chemistry. This type of reaction has traditionally been mediated by transition metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to efficiently promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic paradigm, which is triggered by a hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of <i>in situ</i> counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.


Sign in / Sign up

Export Citation Format

Share Document