Prevalence of Extreme Heat-Resistant Gram-Negative Bacteria Carried by U.S. Cattle at Harvest

2020 ◽  
Vol 83 (8) ◽  
pp. 1438-1443
Author(s):  
MANITA GURAGAIN ◽  
GREGORY E. SMITH ◽  
DAVID A. KING ◽  
JOSEPH M. BOSILEVAC

ABSTRACT Prevalence of heat-resistant bacteria in beef poses a potential problem as thermal interventions are routinely used in beef processing to control contamination. Despite extreme heat-resistant (XHR) Escherichia coli having been isolated from a ground beef processing plant, there has not been a study to assess the prevalence of XHR E. coli among types of cattle. Therefore, this study used a screening assay for XHR gram-negative bacteria and its molecular determinant, the locus of heat resistance (LHR), on feces collected from U.S. cattle. Fecal samples were collected from fed (n = 538), cull dairy (n = 425), and cull beef (n = 475) cattle at nine regional beef processing plants located across the United States. Among the 1,438 cattle sampled from northern (n = 288), southern (n = 288), eastern (n = 287), western (n = 287), and central (n = 288) regions of the United States, 91 (6.3%) cattle showed presence of XHR bacteria, as evident by growth in MacConkey broth following heat treatment of 80°C for 15 min, in their feces. Heat-resistant bacteria (n = 140) were isolated from the 91 fecal samples. Prevalence of XHR bacteria was highest (11%) in cattle from the northern region. Ninety percent of the XHR isolates were identified as E. coli. Multiplex PCR of all 1,438 fecal samples showed that the LHR was absent in 40.7% of samples and intact in 18.7% of samples. Despite the higher prevalence of intact LHR from PCR analysis, only 11 samples (0.8%) were confirmed to contain bacteria with an intact LHR. The LHR was absent in 91% of XHR bacteria, and only 7.9% of XHR bacteria had intact LHR, suggesting a novel mechanism of heat resistance. By developing and using the screening assays, we established the prevalence of XHR bacteria (6.3%) and LHR+ bacteria (0.8%) in U.S. beef cattle. HIGHLIGHTS

PEDIATRICS ◽  
1970 ◽  
Vol 46 (2) ◽  
pp. 315-316
Author(s):  
Heinz F. Eichenwald

Dr. Franciosi raises a point which deserves emphasis: antimicrobial therapy is not a static process; the widespread use of an antibiotic will often result in emergence of resistant bacteria necessitating continuous review of recommendations for therapy. The emergence of resistance of gram-negative enterobacteria to kanamycin, including not only E. coli but also klebsiella-aerobacter, has been reported to us from a number of areas in the United States and is recorded in scattered reports in the literature.


2020 ◽  
Vol 65 (1) ◽  
pp. e00586-20
Author(s):  
Iva Kutilova ◽  
Adam Valcek ◽  
Costas C. Papagiannitsis ◽  
Darina Cejkova ◽  
Martina Masarikova ◽  
...  

ABSTRACTWild corvids were examined for the presence of carbapenemase-producing Gram-negative bacteria in the United States. A total of 13 isolates were detected among 590 fecal samples of American crow; 11 Providencia rettgeri isolates harboring blaIMP-27 on the chromosome as a class 2 integron gene cassette within the Tn7 transposon, 1 Klebsiella pneumoniae ST258 isolate carrying blaKPC-2 on a pKpQIL-like plasmid as a part of Tn4401a, and 1 Enterobacter bugandensis isolate with blaIMI-1 located within EcloIMEX-2.


1997 ◽  
Vol 60 (5) ◽  
pp. 462-465 ◽  
Author(s):  
DALE D. HANCOCK ◽  
DANIEL H. RICE ◽  
LEE ANN THOMAS ◽  
DAVID A. DARGATZ ◽  
THOMAS E. BESSER

Fecal samples from cattle in 100 feedlots in 13 states were bacteriologically cultured for Escherichia coli O157 that did not ferment sorbitol, lacked beta-glucuronidase, and possessed genes coding for Shiga-like toxin. In each feedlot 30 fresh fecal-pat samples were collected from each of four pens: with the cattle shortest on feed, with cattle longest on feed, and with cattle in two randomly selected pens. E. coli O157 was isolated from 210 (1.8%) of 11,881 fecal samples. One or more samples were positive for E. coli O157 in 63 of the 100 feedlots tested. E. coli O157 was found at roughly equal prevalence in all the geographical regions sampled. The prevalence of E. coli O157 in the pens with cattle shortest on feed was approximately threefold higher than for randomly selected and longest on feed pens. Of the E. coli O157 isolates found in this study, 89.52% expressed the H7 flagellar antigen. E. coli O157 was found to be widely distributed among feedlot cattle, but at a low prevalence, in the United States.


2018 ◽  
Vol 101 (5) ◽  
pp. 1593-1609 ◽  
Author(s):  
Benjamin Bastin ◽  
Patrick Bird ◽  
M Joseph Benzinger ◽  
Erin Crowley ◽  
James Agin ◽  
...  

Abstract The Bruker MALDI Biotyper® method utilizes matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for the rapid and accurate identification and confirmation of Gram-negative bacteria from select media types. The alternative method was evaluated using nonselective and selective agars to identify Cronobacter spp., Salmonella spp., and select Gram-negative bacteria. Results obtained by the Bruker MALDI Biotyper were compared to the traditional biochemical methods as prescribed in the appropriate reference methods. Two collaborative studies were organized, one in the United States focusing on Cronobacter spp. and other Gram-negative bacteria, and one in Europe focusing on Salmonella spp. and other Gram-negative bacteria. Fourteen collaborators from seven laboratories located within the United States participated in the first collaborative study for Cronobacter spp. Fifteen collaborators from 15 service laboratories located within Europe participated in the second collaborative study for Salmonella spp. For each target organism (either Salmonella spp. or Cronobacter spp.), a total of 24 blind-coded isolates were evaluated. In each set of 24 organisms, there were 16 inclusivity organisms (Cronobacter spp. or Salmonella spp.) and 8 exclusivity organisms (closely related non-Cronobacter spp. and non-Salmonella spp. Gram-negative organisms). After testing was completed, the total percentage of correct identifications from each agar type for each strain was determined at a percentage of 100.0% to the genus level for the Cronobacter study and a percentage of 100.0% to the genus level for the Salmonella study. For both non-Cronobacter and non-Salmonella organisms, a percentage of 100.0% was correctly identified. The results indicated that the alternative method produced equivalent results when compared to the confirmatory procedures specified by each reference method.


2018 ◽  
Author(s):  
Athina Zampara ◽  
Martine C. Holst Sørensen ◽  
Dennis Grimon ◽  
Fabio Antenucci ◽  
Yves Briers ◽  
...  

ABSTRACTBacteriophage-encoded endolysins degrading the essential peptidoglycan of bacteria are promising alternative antimicrobials to handle the global threat of antibiotic resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since their outer membrane prevents access to the peptidoglycan. Here we present Innolysins, a novel concept for engineering endolysins that allows the enzymes to pass through the outer membrane, hydrolyse the peptidoglycan and kill the target bacterium. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As our proof of concept, we used phage T5 endolysin and receptor binding protein Pb5, which binds irreversibly to the phage receptor FhuA involved in ferrichrome transport inEscherichia coli. In total, we constructed twelve Innolysins fusing endolysin with Pb5 or the binding domain of Pb5 with or without flexible linkers in between. While the majority of the Innolysins maintained their muralytic activity, Innolysin#6 also showed bactericidal activity againstE. colireducing the number of bacteria by 1 log, thus overcoming the outer membrane barrier. Using anE. coli fhuAdeletion mutant, we demonstrated that FhuA is required for bactericidal activity, supporting that the specific binding of Pb5 to its receptor onE. coliis needed for the endolysin to access the peptidoglycan. Accordingly, Innolysin#6 was able to kill other bacterial species that carry conserved FhuA homologs such asShigella sonneiandPseudomonas aeruginosa. In summary, the Innolysin approach expands recent protein engineering strategies allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.IMPORTANCEThe extensive use of antibiotics has led to the emergence of antimicrobial resistant bacteria responsible for infections causing more than 50,000 deaths per year across Europe and the US. In response, the World Health Organization has stressed an urgent need to discover new antimicrobials to control in particular Gram-negative bacterial pathogens, due to their extensive multi-drug resistance. However, the outer membrane of Gram-negative bacteria limits the access of many antibacterial agents to their targets. Here, we developed a new approach, Innolysins that enable endolysins to overcome the outer membrane by exploiting the binding specificity of phage receptor binding proteins. As proof of concept, we constructed Innolysins againstE. coliusing the endolysin and the receptor binding protein of phage T5. Given the rich diversity of phage receptor binding proteins and their different binding specificities, our proof of concept paves the route for creating an arsenal of pathogen specific alternative antimicrobials.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3168 ◽  
Author(s):  
Diana Machado ◽  
Laura Fernandes ◽  
Sofia S. Costa ◽  
Rolando Cannalire ◽  
Giuseppe Manfroni ◽  
...  

Efflux pump inhibitors are of great interest since their use as adjuvants of bacterial chemotherapy can increase the intracellular concentrations of the antibiotics and assist in the battle against the rising of antibiotic-resistant bacteria. In this work, we have described the mode of action of the 2-phenylquinoline efflux inhibitor (4-(2-(piperazin-1-yl)ethoxy)-2-(4-propoxyphenyl) quinolone – PQQ4R), againstEscherichia coli,by studding its efflux inhibitory ability, its synergistic activity in combination with antibiotics, and compared its effects with the inhibitors phenyl-arginine-β-naphthylamide (PAβN) and chlorpromazine (CPZ). The results showed that PQQ4R acts synergistically, in a concentration dependent manner, with antibiotics known to be subject to efflux inE. colireducing their MIC in correlation with the inhibition of their efflux. Real-time fluorometry assays demonstrated that PQQ4R at sub-inhibitory concentrations promote the intracellular accumulation of ethidium bromide inhibiting its efflux similarly to PAβN or CPZ, well-known and described efflux pump inhibitors for Gram-negative bacteria and whose clinical usage is limited by their levels of toxicity at clinical and bacteriological effective concentrations. The time-kill studies showed that PQQ4R, at bactericidal concentrations, has a rapid antimicrobial activity associated with a fast decrease of the intracellular ATP levels. The results also indicated that the mode of action of PQQ4R involves the destabilization of theE. coliinner membrane potential and ATP production impairment, ultimately leading to efflux pump inhibition by interference with the energy required by the efflux systems. At bactericidal concentrations, membrane permeabilization increases and finally ATP is totally depleted leading to cell death. Since drug resistance mediated by the activity of efflux pumps depends largely on the proton motive force (PMF), dissipaters of PMF such as PQQ4R, can be regarded as future adjuvants of conventional therapy againstE. coliand other Gram-negative bacteria, especially their multidrug resistant forms. Their major limitation is the high toxicity for human cells at the concentrations needed to be effective against bacteria. Their future molecular optimization to improve the efflux inhibitory properties and reduce relative toxicity will optimize their potential for clinical usage against multi-drug resistant bacterial infections due to efflux.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Nenad Macesic ◽  
Daniel Green ◽  
Zheng Wang ◽  
Sean B. Sullivan ◽  
Kevin Shim ◽  
...  

Abstract The spread of mcr-1 in the United States remains poorly defined. mcr-1-producing Escherichia coli that also carried blaSHV-12 was detected in a hospitalized patient. No additional cases were identified during screening of 801 Gram-negative isolates. Genomic sequencing identified an IncX4 mcr-1- harboring plasmid and ST117 clonal background associated with avian pathogenic E coli.


2012 ◽  
Vol 33 (9) ◽  
pp. 905-911 ◽  
Author(s):  
Edward F. Keen ◽  
Katrin Mende ◽  
Heather C. Yun ◽  
Wade K. Aldous ◽  
Timothy E. Wallum ◽  
...  

Objective.To determine whether multidrug-resistant (MDR) gram-negative organisms are present in Afghanistan or Iraq soil samples, contaminate standard deployed hospital or modular operating rooms (ORs), or aerosolize during surgical procedures.Design.Active surveillance.Setting.US military hospitals in the United States, Afghanistan, and Iraq.Methods.Soil samples were collected from sites throughout Afghanistan and Iraq and analyzed for presence of MDR bacteria. Environmental sampling of selected newly established modular and deployed OR high-touch surfaces and equipment was performed to determine the presence of bacterial contamination. Gram-negative bacteria aerosolization during OR surgical procedures was determined by microbiological analysis of settle plate growth.Results.Subsurface soil sample isolates recovered in Afghanistan and Iraq included various pansusceptible members of Enterobacteriaceae, Vibrio species, Pseudomonas species, Acinetobacter Iwojfii, and coagulase-negative Staphylococcus (CNS). OR contamination studies in Afghanistan revealed 1 surface with a Micrococcus luteus. Newly established US-based modular ORs and the colocated fixed-facility ORs revealed no gram-negative bacterial contamination prior to the opening of the modular OR and 5 weeks later. Bacterial aerosolization during surgery in a deployed fixed hospital revealed a mean gram-negative bacteria colony count of 12.8 colony-forming units (CFU)/dm2/h (standard deviation [SD], 17.0) during surgeries and 6.5 CFU/dm2/h (SD, 7.5; P = .14) when the OR was not in use.Conclusion.This study demonstrates no significant gram-negative bacilli colonization of modular and fixed-facility ORs or dirt and no significant aerosolization of these bacilli during surgical procedures. These results lend additional support to the role of nosocomial transmission of MDR pathogens or the colonization of the patient themselves prior to injury.


2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.


Sign in / Sign up

Export Citation Format

Share Document