scholarly journals Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France

2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.

2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2017 ◽  
Vol 66 (4) ◽  
pp. 533-536 ◽  
Author(s):  
Moreno Bondi ◽  
Anna Mazzini ◽  
Simona de Niederhäusern ◽  
Ramona Iseppi ◽  
Patrizia Messi

The authors studied the in vitro antibacterial activity of the photo-activated porphyrin meso-tri(N-methyl-pyridyl), mono(N-tetradecyl-pyridyl)porphine (C14) against four multidrug-resistant bacteria: Staphylococcus aureus, Enterococcus faecalis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative). Using 10 μg/ml of porphyrin and 60 sec irradiation we observed the remarkable susceptibility of S. aureus and E. faecalis to treatment while, under the same conditions, E. coli and P. aeruginosa showed very low susceptibility. In a later stage, suspensions of Gram-negative bacteria were processed with EDTA before photo-activation, obtaining a significant decrease in viable counts. In view of the results, if the combination of low porphyrin concentrations and short irradiation times will be effective in vivo also, this approach could be a possible alternative to antibiotics, in particular against localized infections due to multidrug-resistant microorganisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Mohammad Aminul Islam ◽  
Moydul Islam ◽  
Rashedul Hasan ◽  
M. Iqbal Hossain ◽  
Ashikun Nabi ◽  
...  

ABSTRACT Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla NDM-1 gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla NDM-1-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla CTX-M-1 (80%), bla CTX-M-15 (63%), bla TEM (76%), bla SHV (33%), bla CMY-2 (16%), bla OXA-48-like (2%), bla OXA-1 (53%), and bla OXA-47-like (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla NDM-1 were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community. IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla NDM-1 gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


Author(s):  
Evelien Oostdijk ◽  
Marc Bonten

Many infections are caused by enteric bacilli, presumably from endogenous origin. Selective decontamination of the digestive tract (SDD) was developed to selectively eliminate the aerobic Gram-negative bacilli from the digestive tract, leaving the anaerobic flora unaffected. As an alternative to SDD, investigators have evaluated the effects of selective oropharyngeal decontamination (SOpD) alone. Most detailed data on the effects of SDD and SOpD in ICU-patients come from two studies performed in Dutch ICUs. The Dutch studies provide strong evidence that SDD and SOpD reduce ICUmortality, ICU-acquired bacteraemia with Gram-negative bacteria, and systemic antibiotic use. Although successful application has been reported from several solitary ICUs across Europe, it is currently unknown to what extent these effects can be achieved in settings with different bacterial ecology. More studies are needed on the use of SDD or SOpD as a measure to control outbreaks with multidrug resistant bacteria.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S48-S48
Author(s):  
Ali Saleem ◽  
Ahreen Allana ◽  
Lauren Hale ◽  
Shahida M Qureshi ◽  
Aneeta Hotwani ◽  
...  

Abstract Background The recent rapid rise of Extended-spectrum Β Lactamase producing Gram-negative bacteria (ESBL-GNB) has seriously threatened the treatment of common infectious diseases. Neonates have an immature immune system and a delay in appropriate treatment due to ESBL-GNB sepsis can be fatal. This problem of delayed therapy is magnified in the developing world where 99% of the deaths from community acquired neonatal sepsis occur. Additionally ESBL E. coli such as the strain ST131 are known to be persistent gut and vaginal colonizers. In animal models, these strains out-compete colonization with drug-sensitive, commensal E. coli. Gut colonization with ESBL-GNB in infants may therefore have a profound impact on their microbiome and increase their risk of sepsis. Pakistan is a lower middle income country with high antibiotic use per capita and a sharp increase in ESBL-GNB infections. Recent data show that &gt;50% of E. coli isolates from reproductive-aged women of Pakistan are resistant to more than one class of antibiotics. We aimed to determine the rates of gut colonization with ESBL-GNB among healthy infants in a community setting. Methods Stool samples were collected from 100 healthy infants living in a Pakistani suburban community between the ages of 5 and 7 months. Samples were plated on MacConkey agar to select for Gram-negative bacteria. Isolates were screened for resistance against several antimicrobial classes. Molecular testing of the stool samples was done using primers targeting conserved regions of ESBL and carbapenemase genes. Results Forty-eight percent of the infants were positive for ESBL producing Gram-negative bacteria, the majority of which were E. coli, and 7.5% were positive for carbapenemase producers, all of which belonged to Klebsiella spp. Molecular testing showed that 85% of the infant stools were positive for TEM β-lactamase gene, 68% for the CTX-M β-lactamase gene and 33% for the KPC carbapenemase gene. Conclusion The widespread colonization of infants in a developing country with ESBL-GNB is highly concerning. Further, our studies have revealed that the resistome of otherwise healthy infants may be a major reservoir of antibiotic genes in the community. Gut microbiome analysis of the potential impact of colonization with antibiotic-resistant bacteria is on-going. Disclosures All authors: No reported disclosures.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), blaSHV (19%), blaCMY (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.


Sign in / Sign up

Export Citation Format

Share Document