Isotopes and elemental ratios in multi-parameter mixing models

2014 ◽  
Vol 12 (10) ◽  
pp. 694-702 ◽  
Author(s):  
Kathy M. Loftis ◽  
Christof Meile
Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 626
Author(s):  
Shuqiang Lyu ◽  
Die Meng ◽  
Miaole Hou ◽  
Shuai Tian ◽  
Chunhao Huang ◽  
...  

Hyperspectral technology has been used to identify pigments that adhere to the surfaces of polychrome artifacts. However, the colors are often produced by the mixing of pigments, which requires that the spectral characteristics of the pigment mixtures be considered before pigment unmixing is conducted. Therefore, we proposed an experimental approach to investigate the nonlinear degree of spectral reflectance, using several mixing models, and to evaluate their performances in the study of typical mineral pigments. First, five mineral pigments of azurite, malachite, cinnabar, orpiment, and calcite were selected to form five groups of samples, according to their different mass ratios. Second, a fully constrained least squares algorithm based on the linear model and three algorithms based on the nonlinear model were employed to calculate the proportion of each pigment in the mixtures. We evaluated the abundance accuracy as well as the similarity between the measured and reconstructed spectra produced by those mixing models. Third, we conducted pigment unmixing on a Chinese painting to verify the applicability of the nonlinear model. Fourth, continuum removal was also introduced to test the nonlinearity of mineral pigment mixing. Finally, the results indicated that the spectral mixing of different mineral pigments was more in line with the nonlinear mixing model. The spectral nonlinearity of mixed pigments was higher near to the wavelength corresponding to their colors. Meanwhile, the nonlinearity increased with the wavelength increases in the shortwave infrared bands.


2021 ◽  
Author(s):  
Emily M. Herstoff ◽  
Cédric L. Meunier ◽  
Maarten Boersma ◽  
Stephen B. Baines
Keyword(s):  

2021 ◽  
Author(s):  
Christian Birkel ◽  
Alicia Correa Barahona ◽  
Clément Duvert ◽  
Sebastián Granados Bolaños ◽  
Andres Chavarría Palma ◽  
...  

2006 ◽  
Vol 43 (6) ◽  
pp. 1213-1222 ◽  
Author(s):  
MIKKO KILJUNEN ◽  
JONATHAN GREY ◽  
TUULA SINISALO ◽  
CHRIS HARROD ◽  
HEMMO IMMONEN ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 253-272 ◽  
Author(s):  
M. R. Canagaratna ◽  
J. L. Jimenez ◽  
J. H. Kroll ◽  
Q. Chen ◽  
S. H. Kessler ◽  
...  

Abstract. Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.


2021 ◽  
Author(s):  
Jorge Ramón ◽  
Alicia Correa ◽  
Edison Timbe ◽  
Giovanny M. Mosquera ◽  
Enma Mora ◽  
...  

2021 ◽  
Author(s):  
◽  
J. N. Mendoza Chavarría

Spectral unmixing has proven to be a great tool for the analysis of hyperspectral data, with linear mixing models (LMMs) being the most used in the literature. Nevertheless, due to the limitations of the LMMs to accurately describe the multiple light scattering effects in multi and hyperspectral imaging, new mixing models have emerged to describe nonlinear interactions. In this paper, we propose a new nonlinear unmixing algorithm based on a multilinear mixture model called Non-linear Extended Blind Endmember and Abundance Extraction (NEBEAE), which is based on a linear unmixing method established in the literature. The results of this study show that proposed method decreases the estimation errors of the spectral signatures and abundance maps, as well as the execution time with respect the state of the art methods.


2021 ◽  
Author(s):  
J. Gregory Shellnutt ◽  
Jaroslav Dostal ◽  
Tung-Yi Lee

Abstract The Triassic volcanic rocks of Wrangellia erupted at an equatorial to tropical latitude that was within 3000 km of western North America. The mafic and ultramafic volcanic rocks are compositionally and isotopically similar to those of oceanic plateaux that were generated from a Pacific mantle plume-type source. The thermal conditions, estimated from the primitive rocks, indicate that it was a high temperature regime (T P > 1550°C) consistent with elevated temperatures expected for a mantle plume. The only active hotspot currently located near the equator of the eastern Pacific Ocean that was active during the Mesozoic and produced ultramafic volcanic rocks is the Galápagos hotspot. The calculated mantle potential temperatures, trace elemental ratios, and Sr-Nd-Pb isotopes of the Wrangellia volcanic rocks are within the range of those from the Caribbean Plateau and Galápagos Islands, and collectively have similar internal variability as the Hawaii-Emperor island chain. The paleogeographic constraints, thermal estimates, and geochemistry suggests that it is possible that the Galápagos hotspot generated the volcanic rocks of Wrangellia and the Caribbean plateau or, more broadly, that the eastern Pacific (Panthalassa) Ocean was a unique region where anomalously high thermal conditions either periodically or continually existed from ~230 Ma to the present day.


Sign in / Sign up

Export Citation Format

Share Document