9P.S. Churchland and T.J. Sejnowski, “Neural Representation and Neural Computation”

2020 ◽  
Author(s):  
David Badre ◽  
Apoorva Bhandari ◽  
Haley Keglovits ◽  
Atsushi Kikumoto

Cognitive control allows us to think and behave flexibly based on our context and goals. At the heart of theories of cognitive control is a control representation that enables the same input to produce different outputs contingent on contextual factors. In this review, we focus on an important property of the control representation’s neural code: its representational dimensionality. Dimensionality of a neural representation balances a basic separability/generalizability trade-off in neural computation. We will discuss the implications of this trade-off for cognitive control. We will then briefly review current neuroscience findings regarding the dimensionality of control representations in the brain, particularly the prefrontal cortex. We conclude by highlighting open questions and crucial directions for future research.


1990 ◽  
Vol 4 ◽  
pp. 343 ◽  
Author(s):  
Patricia Smith Churchland ◽  
Terrence J. Sejnowski

2020 ◽  
pp. 182-204
Author(s):  
Gualtiero Piccinini

This chapter outlines a framework of multilevel neurocognitive mechanisms that incorporates neural representation and neural computation. Paradigmatic explanations in cognitive neuroscience fit this framework and thus cognitive neuroscience constitutes a break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations are mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain cognition. To a large extent, practicing cognitive neuroscientists have already accepted this shift, but philosophical theory has not fully acknowledged and appreciated its significance. As a result, the explanatory framework underlying cognitive neuroscience has remained largely implicit. This chapter explicates this framework and demonstrates its contrast with previous approaches.


Author(s):  
Hui Sun ◽  
Kazuya Saito ◽  
Adam Tierney

Abstract Precise auditory perception at a subcortical level (neural representation and encoding of sound) has been suggested as a form of implicit L2 aptitude in naturalistic settings. Emerging evidence suggests that such implicit aptitude explains some variance in L2 speech perception and production among adult learners with different first language backgrounds and immersion experience. By examining 46 Chinese learners of English, the current study longitudinally investigated the extent to which explicit and implicit auditory processing ability could predict L2 segmental and prosody acquisition over a 5-month early immersion. According to the results, participants’ L2 gains were associated with more explicit and integrative auditory processing ability (remembering and reproducing music sequences), while the role of implicit, preconscious perception appeared to be negligible at the initial stage of postpubertal L2 speech learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Moin Uddin Atique ◽  
Joseph Thachil Francis

AbstractMirror Neurons (MNs) respond similarly when primates make or observe grasping movements. Recent work indicates that reward expectation influences rostral M1 (rM1) during manual, observational, and Brain Machine Interface (BMI) reaching movements. Previous work showed MNs are modulated by subjective value. Here we expand on the above work utilizing two non-human primates (NHPs), one male Macaca Radiata (NHP S) and one female Macaca Mulatta (NHP P), that were trained to perform a cued reward level isometric grip-force task, where the NHPs had to apply visually cued grip-force to move and transport a virtual object. We found a population of (S1 area 1–2, rM1, PMd, PMv) units that significantly represented grip-force during manual and observational trials. We found the neural representation of visually cued force was similar during observational trials and manual trials for the same units; however, the representation was weaker during observational trials. Comparing changes in neural time lags between manual and observational tasks indicated that a subpopulation fit the standard MN definition of observational neural activity lagging the visual information. Neural activity in (S1 areas 1–2, rM1, PMd, PMv) significantly represented force and reward expectation. In summary, we present results indicating that sensorimotor cortices have MNs for visually cued force and value.


SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


Sign in / Sign up

Export Citation Format

Share Document