Rethinking the Patents and Designs Act in the era of genomic research

2022 ◽  
pp. 48-56
Author(s):  
Olumayowa O. Adesanya
Keyword(s):  
2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2019 ◽  
Vol 14 (2) ◽  
pp. 157-163
Author(s):  
Majid Hajibaba ◽  
Mohsen Sharifi ◽  
Saeid Gorgin

Background: One of the pivotal challenges in nowadays genomic research domain is the fast processing of voluminous data such as the ones engendered by high-throughput Next-Generation Sequencing technologies. On the other hand, BLAST (Basic Local Alignment Search Tool), a longestablished and renowned tool in Bioinformatics, has shown to be incredibly slow in this regard. Objective: To improve the performance of BLAST in the processing of voluminous data, we have applied a novel memory-aware technique to BLAST for faster parallel processing of voluminous data. Method: We have used a master-worker model for the processing of voluminous data alongside a memory-aware technique in which the master partitions the whole data in equal chunks, one chunk for each worker, and consequently each worker further splits and formats its allocated data chunk according to the size of its memory. Each worker searches every split data one-by-one through a list of queries. Results: We have chosen a list of queries with different lengths to run insensitive searches in a huge database called UniProtKB/TrEMBL. Our experiments show 20 percent improvement in performance when workers used our proposed memory-aware technique compared to when they were not memory aware. Comparatively, experiments show even higher performance improvement, approximately 50 percent, when we applied our memory-aware technique to mpiBLAST. Conclusion: We have shown that memory-awareness in formatting bulky database, when running BLAST, can improve performance significantly, while preventing unexpected crashes in low-memory environments. Even though distributed computing attempts to mitigate search time by partitioning and distributing database portions, our memory-aware technique alleviates negative effects of page-faults on performance.


2020 ◽  
Author(s):  
Fang Li ◽  
Muhammad "Tuan" Amith ◽  
Grace Xiong ◽  
Jingcheng Du ◽  
Yang Xiang ◽  
...  

BACKGROUND Alzheimer’s Disease (AD) is a devastating neurodegenerative disease, of which the pathophysiology is insufficiently understood, and the curative drugs are long-awaited to be developed. Computational drug repurposing introduces a promising complementary strategy of drug discovery, which benefits from an accelerated development process and decreased failure rate. However, generating new hypotheses in AD drug repurposing requires multi-dimensional and multi-disciplinary data integration and connection, posing a great challenge in the era of big data. By integrating data with computable semantics, ontologies could infer unknown relationships through automated reasoning and fulfill an essential role in supporting computational drug repurposing. OBJECTIVE The study aimed to systematically design a robust Drug Repurposing-Oriented Alzheimer’s Disease Ontology (DROADO), which could model fundamental elements and their relationships involved in AD drug repurposing and integrate their up-to-date research advance comprehensively. METHODS We devised a core knowledge model of computational AD drug repurposing, based on both pre-genomic and post-genomic research paradigms. The model centered on the possible AD pathophysiology and abstracted the essential elements and their relationships. We adopted a hybrid strategy to populate the ontology (classes and properties), including importing from well-curated databases, extracting from high-quality papers and reusing the existing ontologies. We also leveraged n-ary relations and nanopublication graphs to enrich the object relations, making the knowledge stored in the ontology more powerful in supporting computational processing. The initially built ontology was evaluated by a semiotic-driven and web-based tool Ontokeeper. RESULTS The current version of DROADO was composed of 1,021 classes, 23 object properties and 3,207 axioms, depicting a fundamental network related to computational neuroscience concepts and relationships. Assessment using semiotic evaluation metrics by OntoKeeper indicated sufficient preliminary quality (semantics, usefulness and community-consensus) of the ontology. CONCLUSIONS As an in-depth knowledge base, DROADO would be promising in enabling computational algorithms to realize supervised mining from multi-source data, and ultimately, facilitating the discovery of novel AD drug targets and the realization of AD drug repurposing.


Author(s):  
Matilda A. Haas ◽  
Harriet Teare ◽  
Megan Prictor ◽  
Gabi Ceregra ◽  
Miranda E. Vidgen ◽  
...  

AbstractThe complexities of the informed consent process for participating in research in genomic medicine are well-documented. Inspired by the potential for Dynamic Consent to increase participant choice and autonomy in decision-making, as well as the opportunities for ongoing participant engagement it affords, we wanted to trial Dynamic Consent and to do so developed our own web-based application (web app) called CTRL (control). This paper documents the design and development of CTRL, for use in the Australian Genomics study: a health services research project building evidence to inform the integration of genomic medicine into mainstream healthcare. Australian Genomics brought together a multi-disciplinary team to develop CTRL. The design and development process considered user experience; security and privacy; the application of international standards in data sharing; IT, operational and ethical issues. The CTRL tool is now being offered to participants in the study, who can use CTRL to keep personal and contact details up to date; make consent choices (including indicate preferences for return of results and future research use of biological samples, genomic and health data); follow their progress through the study; complete surveys, contact the researchers and access study news and information. While there are remaining challenges to implementing Dynamic Consent in genomic research, this study demonstrates the feasibility of building such a tool, and its ongoing use will provide evidence about the value of Dynamic Consent in large-scale genomic research programs.


2015 ◽  
Vol 43 (4) ◽  
pp. 827-842
Author(s):  
Anya E.R. Prince ◽  
John M. Conley ◽  
Arlene M. Davis ◽  
Gabriel Lázaro-Muñoz ◽  
R. Jean Cadigan

The growing practice of returning individual results to research participants has revealed a variety of interpretations of the multiple and sometimes conflicting duties that researchers may owe to participants. One particularly difficult question is the nature and extent of a researcher’s duty to facilitate a participant’s follow-up clinical care by placing research results in the participant’s medical record. The question is especially difficult in the context of genomic research. Some recent genomic research studies — enrolling patients as participants — boldly address the question with protocols dictating that researchers place research results directly into study participants’ existing medical records, without participant consent. Such privileging of researcher judgment over participant choice may be motivated by a desire to discharge a duty that researchers perceive themselves as owing to participants. However, the underlying ethical, professional, legal, and regulatory duties that would compel or justify this action have not been fully explored.


2021 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Laura B. Scheinfeldt ◽  
Andrew Brangan ◽  
Dara M. Kusic ◽  
Sudhir Kumar ◽  
Neda Gharani

Pharmacogenomics holds the promise of personalized drug efficacy optimization and drug toxicity minimization. Much of the research conducted to date, however, suffers from an ascertainment bias towards European participants. Here, we leverage publicly available, whole genome sequencing data collected from global populations, evolutionary characteristics, and annotated protein features to construct a new in silico machine learning pharmacogenetic identification method called XGB-PGX. When applied to pharmacogenetic data, XGB-PGX outperformed all existing prediction methods and identified over 2000 new pharmacogenetic variants. While there are modest pharmacogenetic allele frequency distribution differences across global population samples, the most striking distinction is between the relatively rare putatively neutral pharmacogene variants and the relatively common established and newly predicted functional pharamacogenetic variants. Our findings therefore support a focus on individual patient pharmacogenetic testing rather than on clinical presumptions about patient race, ethnicity, or ancestral geographic residence. We further encourage more attention be given to the impact of common variation on drug response and propose a new ‘common treatment, common variant’ perspective for pharmacogenetic prediction that is distinct from the types of variation that underlie complex and Mendelian disease. XGB-PGX has identified many new pharmacovariants that are present across all global communities; however, communities that have been underrepresented in genomic research are likely to benefit the most from XGB-PGX’s in silico predictions.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
S. Mezinska ◽  
L. Gallagher ◽  
M. Verbrugge ◽  
E.M. Bunnik

Abstract Background Genomic research on neurodevelopmental disorders (NDDs), particularly involving minors, combines and amplifies existing research ethics issues for biomedical research. We performed a review of the literature on the ethical issues associated with genomic research involving children affected by NDDs as an aid to researchers to better anticipate and address ethical concerns. Results Qualitative thematic analysis of the included articles revealed themes in three main areas: research design and ethics review, inclusion of research participants, and communication of research results. Ethical issues known to be associated with genomic research in general, such as privacy risks and informed consent/assent, seem especially pressing for NDD participants because of their potentially decreased cognitive abilities, increased vulnerability, and stigma associated with mental health problems. Additionally, there are informational risks: learning genetic information about NDD may have psychological and social impact, not only for the research participant but also for family members. However, there are potential benefits associated with research participation, too: by enrolling in research, the participants may access genetic testing and thus increase their chances of receiving a (genetic) diagnosis for their neurodevelopmental symptoms, prognostic or predictive information about disease progression or the risk of concurrent future disorders. Based on the results of our review, we developed an ethics checklist for genomic research involving children affected by NDDs. Conclusions In setting up and designing genomic research efforts in NDD, researchers should partner with communities of persons with NDDs. Particular attention should be paid to preventing disproportional burdens of research participation of children with NDDs and their siblings, parents and other family members. Researchers should carefully tailor the information and informed consent procedures to avoid therapeutic and diagnostic misconception in NDD research. To better anticipate and address ethical issues in specific NDD studies, we suggest researchers to use the ethics checklist for genomic research involving children affected by NDDs presented in this paper.


ACI Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e167-e172
Author(s):  
Srikar Chamala ◽  
Siddardha Majety ◽  
Shesh Nath Mishra ◽  
Kimberly J. Newsom ◽  
Shaileshbhai Revabhai Gothi ◽  
...  

AbstractPatient care is rapidly evolving toward the inclusion of precision genomic medicine when genomic tests are used by clinicians to determine disease predisposition, prognosis, diagnosis, and improve therapeutic decision-making. However, unlike other clinical pathology laboratory tests, the development, deployment, and delivery of genomic tests and results are an intricate process. Genomic technologies are diverse, fast changing, and generate massive data. Implementation of these technologies in a Clinical Laboratory Improvement Amendments-certified and College of American Pathologists-accredited pathology laboratory often require custom clinical grade computational data analysis and management workflows. Additionally, accurate classification and reporting of clinically actionable genetic mutation requires well-curated disease/application-specific knowledgebases and expertise. Moreover, lack of “out of the box” technical features in electronic health record systems necessitates custom solutions for communicating genetic information to clinicians and patients. Genomic data generated as part of clinical care easily adds great value for translational research. In this article, we discuss current and future innovative clinical bioinformatics solutions and workflows developed at our institution for effective implementation of precision genomic medicine across molecular pathology, patient care, and translational genomic research.


2021 ◽  
Vol 11 (5) ◽  
pp. 399
Author(s):  
Casey Overby Taylor ◽  
Natalie Flaks Manov ◽  
Katherine D. Crew ◽  
Chunhua Weng ◽  
John J. Connolly ◽  
...  

There is a need for multimodal strategies to keep research participants informed about study results. Our aim was to characterize preferences of genomic research participants from two institutions along four dimensions of general research result updates: content, timing, mechanism, and frequency. Methods: We conducted a web-based cross-sectional survey that was administered from 25 June 2018 to 5 December 2018. Results: 397 participants completed the survey, most of whom (96%) expressed a desire to receive research updates. Preferences with high endorsement included: update content (brief descriptions of major findings, descriptions of purpose and goals, and educational material); update timing (when the research is completed, when findings are reviewed, when findings are published, and when the study status changes); update mechanism (email with updates, and email newsletter); and update frequency (every three months). Hierarchical cluster analyses based on the four update preferences identified four profiles of participants with similar preference patterns. Very few participants in the largest profile were comfortable with budgeting less money for research activities so that researchers have money to set up services to send research result updates to study participants. Conclusion: Future studies may benefit from exploring preferences for research result updates, as we have in our study. In addition, this work provides evidence of a need for funders to incentivize researchers to communicate results to participants.


Sign in / Sign up

Export Citation Format

Share Document