scholarly journals Wind Energy Versus Natural Gas in Latvia: Policy Evaluation With a System Dynamic Simulation

2021 ◽  
Vol 15 ◽  
pp. 53-60
Author(s):  
A. Skujevska ◽  
F. Romagnoli ◽  
T. Zoss ◽  
I. Laicane ◽  
D. Blumberga

To achieve national target proposed by the Renewable Energy Source Directive 2009/28/EC, to also accomplish to the CO2 emission reduction targets and to decrease the energy dependency Latvian government is planning to adopt different strategy policies such as feed-in tariffs (FITs) and capital subsidies, in order to incentive investor to use renewable based technology for power production Neverthelss it is crucial to understand in long term perspective the effect and the costs of a specific policy (made even by the combination of different policy tools) applied to the energy sector. Using this model, or an extended version of it, a cost/benefit analysis of a different set of policy scenarios can be carried out. More in specific this study is driving its attention at a situation where it is possible to increase the share of wind power in the energy balance respect the use of natural gas as primary energy for power generation. Four political instruments are chosen in this model: subsidies for construction of new wind-power facilities, information package at all power supply levels for risk reduction and reduction of maintenance costs through a learning effect. The simulation period is from 2010 to 2110. The analysis of policy instruments for development of renewable energy resources in power system illustrates wide potential of system dynamic modelling use for statement of priorities on power diversification. The policy instrument of use of subsidies is a crucial priority. Feed-in tariff is not providing an evident. The reason of that can be related to the key aspect on the way Latvia is organizing its feed-in tariff policy.

Author(s):  
Saad Salman Khan

Electric power is flexible, easily controlled and is used in everyone's daily life. Humans can't use other form of energy except electric power because electric power, is one of the main factor to economic development, improved health care, poverty alleviation, and cleaner environment for a society. According to an estimate people more than 1.5 billion worldwide don't have sufficient access to electric power due to inaccessibility, electrification via traditional centralized form of grid was not a feasible option. This led to phenomenal research interest in microgrid based energy supply. Microgrids are low voltage network's that are designed to generate, transmit and distribute electrical energy. These grids accomplish specific goals such as cost reduction, CO2 emission reduction, reliability and diversification of energy sources. Microgrids are an ideal way to integrate renewable energy resources in the local community and allow consumer participation in an energy enterprise. In this chapter, we present a comprehensive overview of recent advancement in Microgrids.


Author(s):  
David T. Gallaspy ◽  
Rodney E. Sears

The economics and potential offsets of imported energy are analyzed. Benefits to the carbon footprint of the region are estimated. A commercial structure for the operation of such a co-operative bio-refinery is proposed. Rural and agricultural regions typically have ample production of biomass in various forms, including wood from forestry, agricultural wastes and range grasses. Certain regions also have renewable energy resources such as wind power, solar insolation and hydraulic power. Rural regions are typically seen to have a potential for renewable energy that greatly exceeds energy consumption due to human activity in the region. However, energy consumption in such areas is highly biased toward non-renewable sources, just as in more urbanized regions. This is due to the standardization of virtually all manufactured energy conversion equipment to use available processed energy sources such as electricity and natural gas and refined fuels such as diesel and gasoline. In addition, agricultural activities are highly dependent on energy-intensive petrochemicals such as fertilizers, pesticides, and herbicides. Energy sustainability and self-sufficiency can therefore be increased by conversion of local renewable resources into appropriate form values for existing energy conversion equipment. Solar power, wind power and hydropower are fully commercial, although more economic in some regions than in others. The production of electricity from biomass fuels via conventional steam cycles is well established, if challenging from an economic standpoint. However, conversion of biomass and other renewable resources into fuels that can be used in standard equipment, and chemicals and fertilizers for local agricultural production is both technically and economically challenging. The authors evaluate the potential for a typical rural region to offset imports of conventional non-renewable energy such as electricity, engine fuels, and fertilizers via the establishment of a regional bio-refinery financed and operated as a local co-operative. The renewable resources of the typical rural region are assumed to facilitate the analysis. The appropriate technologies, scope, product slate, production rates, capital costs and operating costs for the bio-refinery are defined.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1110 ◽  
Author(s):  
Yunesky Masip ◽  
Anibal Gutierrez ◽  
Joel Morales ◽  
Antonio Campo ◽  
Meyli Valín

Providing energy to areas isolated from the electricity grid through the use of a smart integrated renewable energy system (SIRES) is proposed in this study for Valparaiso, Chile. The study analyzes the process of identifying the appropriate size of a SIRES considering technical and economic factors. An optimization model proposed in the literature was modified, and a subsequent spatial–temporal analysis of the different variables was conducted. The model comprises locally available renewable energy resources, such as biomass, biogas, wind power, solar photovoltaic, and thermal power. Furthermore, it was used to determine the energy potential of each of the isolated areas, identifying those areas in which the SIRES could be implemented as a sustainable solution. The design simulates the cost of the initial investment and energy generation in the chosen areas. The study also includes the selection of different system components and the use of the general model to determine the optimal combination of energy subsystems for isolated areas with the aim of minimizing the cost of energy generations. Finally, an economic evaluation showed that the use of a SIRES based mainly on solar energy supported by biomass, biogas, and mini-wind power costs approximately three times less than extending the electricity grid network.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5377
Author(s):  
Abdullah Al-Shereiqi ◽  
Amer Al-Hinai ◽  
Mohammed Albadi ◽  
Rashid Al-Abri

Harnessing wind energy is one of the fastest-growing areas in the energy industry. However, wind power still faces challenges, such as output intermittency due to its nature and output reduction as a result of the wake effect. Moreover, the current practice uses the available renewable energy resources as a fuel-saver simply to reduce fossil-fuel consumption. This is related mainly to the inherently variable and non-dispatchable nature of renewable energy resources, which poses a threat to power system reliability and requires utilities to maintain power-balancing reserves to match the supply from renewable energy resources with the real-time demand levels. Thus, further efforts are needed to mitigate the risk that comes with integrating renewable resources into the electricity grid. Hence, an integrated strategy is being created to determine the optimal size of the hybrid wind-solar photovoltaic power systems (HWSPS) using heuristic optimization with a numerical iterative algorithm such that the output fluctuation is minimized. The research focuses on sizing the HWSPS to reduce the impact of renewable energy resource intermittency and generate the maximum output power to the grid at a constant level periodically based on the availability of the renewable energy resources. The process of determining HWSPS capacity is divided into two major steps. A genetic algorithm is used in the initial stage to identify the optimum wind farm. A numerical iterative algorithm is used in the second stage to determine the optimal combination of photovoltaic plant and battery sizes in the search space, based on the reference wind power generated by the moving average, Savitzky–Golay, Gaussian and locally weighted linear regression techniques. The proposed approach has been tested on an existing wind power project site in the southern part of the Sultanate of Oman using a real weather data. The considered land area dimensions are 2 × 2 km. The integrated tool resulted in 39 MW of wind farm, 5.305 MW of PV system, and 0.5219 MWh of BESS. Accordingly, the estimated cost of energy based on the HWSPS is 0.0165 EUR/kWh.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4314 ◽  
Author(s):  
Maqbool ◽  
Baetens ◽  
Lotfi ◽  
Vandevelde ◽  
Eetvelde

This article provides an agent-based model of a hypothetical standalone electricity network to identify how the feed-in tariffs and the installed capacity of wind power, calculated in percentage of total system demand, affect the electricity consumption from renewables. It includes the mechanism of electricity pricing on the Day Ahead Market (DAM) and the Imbalance Market (IM). The extra production volumes of Electricity from Renewable Energy Sources (RES-E) and the flexibility of electrical consumption of industries is provided as reserves on the IM. Five thousand simulations were run by using the agent-based model to gather data that were then fit in linear regression models. This helped to quantify the effect of feed-in tariffs and installed capacity of wind power on the consumption from renewable energy and market prices. The consumption from renewable sources, expressed as percentage of total system consumption, increased by 8.17% for every 10% increase in installed capacity of wind power. The sharpest increase in renewable energy consumption is observed when a feed-in tariff of 0.04 €/kWh is provided to the wind farm owners, resulting in an average increase of 9.1% and 5.1% in the consumption from renewable sources while the maximum installed capacity of wind power is 35% and 100%, respectively. The regression model for the annualized DAM prices showed an increase by 0.01 €cents/kWh in the DAM prices for every 10% increase in the installed wind power capacity. With every increase of 0.01 €/kWh in the value of feed-in tariffs, the mean DAM price is lowered as compared to the previous value of the feed-in tariff. DAM prices only decrease with increasing installed wind capacity when a feed-in tariff of 0.04 €/kWh is provided. This is observed because all wind power being traded on DAM at a very cheap price. Hence, no volume of electricity is being stored for availability on IM. The regression models for predicting IM prices show that, with every 10% increase in installed capacity of wind power, the annualized IM price decreases by 0.031 and 0.34 €cents/kWh, when installed capacity of wind power is between 0 and 25%, and between 25 and 100%, respectively. The models also showed that, until the maximum installed capacity of wind power is less than 25%, the IM prices increase when the value of feed-in tariff is 0.01 and 0.04 €/kWh, but decrease for a feed-in tariff of 0.02 and 0.03 €/kWh. When installed capacity of wind power is between 25 and 100%, increasing feed-in tariffs to the value of 0.03 €/kWh result in lowering the mean IM price. However, at 0.04 €/kWh, the mean IM price is higher, showing the effect of no storage reserves being available on IM and more expensive reserves being engaged on the IM. The study concludes that the effect of increasing installed capacity of wind power is more significant on increasing consumption of renewable energy and decreasing the DAM and IM prices than the effect of feed-in tariffs. However, the effect of increasing values of both factors on the profit of RES-E producers with storage facilities is not positive, pointing to the need for customized rules and incentives to encourage their market participation and investment in storage facilities.


2015 ◽  
Vol 16 (1) ◽  
pp. 54-68 ◽  
Author(s):  
Andra Blumberga ◽  
Lelde Timma ◽  
Dagnija Blumberga

Abstract When the renewable energy is used, the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover, the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.


2021 ◽  
Vol 13 (6) ◽  
pp. 3349
Author(s):  
Riaz Uddin ◽  
Abdurrahman Javid Shaikh ◽  
Hashim Raza Khan ◽  
Muhammad Ayaz Shirazi ◽  
Athar Rashid ◽  
...  

To a great extent, Pakistan and Turkey rely on imported fossil fuels to meet their energy demands. Pakistan is moving in the right direction, placing focus on renewable energy resources in its current infrastructure in order to address the energy shortage. Several projects (e.g., wind power and solar PV (photovoltaic) technologies) are operational or under development; they are intended to reduce energy challenges in Pakistan. The new government in Pakistan aims to increase the share of renewable energy in total power generation to 30% by 2030. On the other hand, Turkey surpasses Pakistan in renewable energy resources; for example, there are 186 operational wind energy power plants across the country. In addition, Turkey utilizes solar energy—mainly for residential usage. Turkey’s Vision 2023 energy agenda aims to supply 30% of their power demands from modern renewable energy resources. Turkey has implemented solar PV, solar buildings, wind power plants, geothermal energy resources, and biomass technology for heating, cooling and electricity generation. At present, Turkey’s supply to meet energy demands in the country is 56% fossil fuel energy resources and 44% renewable energy, including hydropower. Accessible details reveal that geothermal energy resources have been continuously neglected in Pakistan by the Ministry of Energy (power division); this is in contrast to the Turkish case, in which utilization of geothermal energy resources for heating and cooling purposes is efficient. With all the facts and figures under consideration, in this paper, comparative analyses are performed which reveal that the production of electricity from geothermal energy technologies is lower than the massive potential in both countries. Recommendations are made for important policies to promote renewable energy technologies, which could effectively support energy decentralization by providing electricity to rural areas and the national grid.


Sign in / Sign up

Export Citation Format

Share Document