scholarly journals Controlling of DC-DC Buck Converters Using Microcontrollers

Author(s):  
Mohammed O. Alsumady ◽  
Yazan K. Alturk ◽  
Ahmad Dagamseh ◽  
Ma'moun Tantawi

This paper presents a technique to digitally control the output voltage of a DC-DC converter via a microcontroller. The voltage regulation and controlling were achieved utilizing an LM2596 buck converter. A digital potentiometer MCP41050 is utilized to smoothly control the regulated output DC voltage via the SPI digital protocol. The proposed design is manufactured and tested for various loads. This device is considered as a step-down voltage regulator capable of driving 3A load with high efficiency, excellent linearity, source-voltage variation, and load regulation. The results show that the system can control the output voltage with satisfactory performance and high accuracy. With various loads, the proposed system shows a mean square error of 0.015±0.037 volts tested with a regulated voltage of 5 volts. The efficiency improves from about 80% to around 91% at a 1 kΩ load. This design eliminates the possible errors that arise when manually varying the voltage of the buck converter; by means of using a microcontroller. Such a system ensures a proper digitally controlled output voltage with a better performance, which can be applied in various applications.

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1886
Author(s):  
Younghoon Cho ◽  
Paul Jang

Fly-buck converter is a multi-output converter with the structure of a synchronous buck converter structure on the primary side and a flyback converter structure on the secondary side, and can be utilized in various applications due to its many advantages. In terms of control, the primary side of the fly-buck converter has the same structure as a synchronous buck converter, allowing the constant-on-time (COT) control to be applied to the fly-buck converter. However, due to the inherent energy transfer principle, the primary-side output voltage regulation of COT controlled fly-buck converters may be poor, which can deteriorate the overall converter performance. Therefore, the primary output capacitor must be carefully designed to improve the voltage regulation characteristics. In this paper, a theoretical analysis of the output voltage regulation in COT controlled fly-buck converter is conducted, and based on this, a design guideline for the primary output capacitor considering the output voltage regulation is presented. The validity of the analysis and design guidelines was verified using a 5 W prototype of the COT controlled fly-buck converter for telecommunication auxiliary power supply.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4723 ◽  
Author(s):  
Huihui Geng ◽  
Xueyi Zhang ◽  
Yufeng Zhang ◽  
Wenjing Hu ◽  
Yulong Lei ◽  
...  

Aiming at the problems of large excitation loss and low power generation efficiency of silicon rectifier generators and the unstable output voltage of permanent magnet (PM) generators, a hybrid excitation generator (HEG) with suspended brushless claw pole electrical excitation rotor (EER) and combined magnetic pole PM rotor is proposed in the present work. With only one fractional slot winding stator, the generator adopts PM field as the main magnetic field and electrical excitation field as the auxiliary magnetic field, which not only retains the advantages of high efficiency of PM generators but also effectively reduces excitation consumption. The main structure parameters and the design method were analyzed, and a simulation analysis of no-load magnetic field distribution and flux regulation ability was carried out using finite element software to verify the rationality of the hybrid excitation parallel magnetic circuit design. Moreover, the no-load, load, regulation, and voltage regulation characteristics of the designed generator were tested, and the results show that the designed generator has a wide range of voltage regulation, which can ensure stable output voltage under variable speed and load conditions.


This paper presents a closed loop control of an active-clamped full-wave quasi-resonant boost converter with zero-current-switching (ZCS) for power factor correction. Possibility to incorporate higherswitching frequency and has some potency to reduce switching losses. Power factor improvement and high efficiency is achieved with a constant output voltage and DC output voltage is regulated by using closed loop control .The concept of the proposed switchingscheme results lesser switching loss, higher efficiency, possibility to have higher switching frequency, and has potential to reduce converter's conducted EMI. This paper also presents voltage regulation using closed loop system and the simulation results are verified.


Author(s):  
Shaik Gousia Begum ◽  
Syed Sarfaraz Nawaz ◽  
G. Sai Anjaneyulu

This paper presents the design of a Fuzzy logic controller for a DC-DC step-down converter. Buck converters are step-down regulated converters which convert the DC voltage into a lower level standardized DC voltage. The buck converters are used in solar chargers, battery chargers, quadcopters, industrial and traction motor controllers in automobile industries etc. The major drawback in buck converter is that when input voltage and load change, the output voltage also changes which reduces the overall efficiency of the Buck converter. So here we are using a fuzzy logic controller which responds quickly for perturbations, compared to a linear controllers like P, PI, PID controllers. The Fuzzy logic controllers have become popular in designing control application like washing machine, transmission control, because of their simplicity, low cost and adaptability to complex systems without mathematical modeling So we are implementing a fuzzy logic controller for buck converter which maintains fixed output voltage even when there are fluctuations in supply voltage and load. The fuzzy logic controller for the DC-DC Buck converter is simulated using MATLAB/SIMULINK. The proposed approach is implemented on DC-DC step down converter for an input of 230V and we get the desired output for variations in load or references. This proposed system increases the overall efficiency of the buck converter.


Author(s):  
Ian Kearney

Abstract Accurate and lossless current sensing is vital for high performance multiphase buck converters used in the latest voltage regulation modules (VRMs). A synchronous FET onstate resistance based approach is an alternative topology to DCR based sensing and is compatible with any controller, which requires inductor current information. The MOSFET driver has built-in sense circuitry, which when co-packaged with the MOSFETs reduces total footprint and ease of design. The Powerstage embodiment virtually eliminates the parasitic inductance and resistance between Control and Synchronous power MOSFETS; and using thick copper clips substantially reduce the parasitics associated with the input supply voltage (VIN) and the switch node output voltage (VSW) connections when compared to wire-bonded solutions. This paper presents a novel investigation into a contradictory low on-resistance paradox in a stacked 3D configuration. Through analysis, characterization and simulation the author deciphered the conundrum leading to a root cause explained by a mismatch of internal gain and referenced on-resistance. Building on previous metrology improvements the innovative insights drove analysis toward root-cause.


Sign in / Sign up

Export Citation Format

Share Document