scholarly journals Text Line Recognition of Dai Language using Statistical Characteristics of Texture Analysis and Deep Gaussian Process

Author(s):  
Jingying Zhao ◽  
Na Dong ◽  
Hai Guo ◽  
Yifan Liu ◽  
Doudou Yang

In view of the different recognition methods of Dai in different language, we proposed a novel method of text line recognition for New Tai Lue and Lanna Dai based on statistical characteristics of texture analysis and Deep Gaussian process, which can classify different Dai text lines. First, the Dai text line database is constructed, and the images are preprocessed by de-noise and size standardization. Gabor multi-scale decomposition is carried out on two Dai text line images, and then the statistical features of image entropy and average row variance feature is extracted. The multi-layers Deep Gaussian process classifier is constructed. Experiments show that the accuracy of text line classification of New Tai Lue and Lanna Dai based on Deep Gaussian process is 99.89%, the values of precision, recall and f1-score are 1, 0.9978 and 0.9989, respectively. The combination of Gabor texture analysis average row variance statistical features and Deep Gaussian process model can effectively classify the text line of New Tai Lue and Lanna Dai. Comparative experiments show that the classification accuracy of the model is superior to traditional methods, such as Gaussian Naive Bayes, Random Forest, Decision Tree, and Gaussian Process.

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6491
Author(s):  
Le Zhang ◽  
Jeyan Thiyagalingam ◽  
Anke Xue ◽  
Shuwen Xu

Classification of clutter, especially in the context of shore based radars, plays a crucial role in several applications. However, the task of distinguishing and classifying the sea clutter from land clutter has been historically performed using clutter models and/or coastal maps. In this paper, we propose two machine learning, particularly neural network, based approaches for sea-land clutter separation, namely the regularized randomized neural network (RRNN) and the kernel ridge regression neural network (KRR). We use a number of features, such as energy variation, discrete signal amplitude change frequency, autocorrelation performance, and other statistical characteristics of the respective clutter distributions, to improve the performance of the classification. Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter data for land and real clutter data from sea, offers improved classification accuracy. More specifically, the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional support vector machine and extreme learning based solutions.


Author(s):  
Prakash S. Hiremath ◽  
Rohini A. Bhusnurmath

A novel method of colour texture analysis based on anisotropic diffusion for industrial applications is proposed and the performance analysis of colour texture descriptors is examined. The objective of the study is to explore different colour spaces for their suitability in automatic classification of certain textures in industrial applications, namely, granite tiles and wood textures, using computer vision. The directional subbands of digital image of material samples obtained using wavelet transform are subjected to anisotropic diffusion to obtain the texture components. Further, statistical features are extracted from the texture components. The linear discriminant analysis is employed to achieve class separability. The texture descriptors are evaluated on RGB, HSV, YCbCr, Lab colour spaces and compared with gray scale texture descriptors. The k-NN classifier is used for texture classification. For the experimentation, benchmark databases, namely, MondialMarmi and Parquet are considered. The experimental results are encouraging as compared to the state-of-the-art-methods.


2012 ◽  
Author(s):  
Enea Poletti ◽  
Elisa Veronese ◽  
Massimiliano Calabrese ◽  
Alessandra Bertoldo ◽  
Enrico Grisan

2019 ◽  
Author(s):  
S. Gitto ◽  
D. Albano ◽  
V. Chianca ◽  
R. Cuocolo ◽  
L. Ugga ◽  
...  

2018 ◽  
Author(s):  
Caitlin C. Bannan ◽  
David Mobley ◽  
A. Geoff Skillman

<div>A variety of fields would benefit from accurate pK<sub>a</sub> predictions, especially drug design due to the affect a change in ionization state can have on a molecules physiochemical properties.</div><div>Participants in the recent SAMPL6 blind challenge were asked to submit predictions for microscopic and macroscopic pK<sub>a</sub>s of 24 drug like small molecules.</div><div>We recently built a general model for predicting pK<sub>a</sub>s using a Gaussian process regression trained using physical and chemical features of each ionizable group.</div><div>Our pipeline takes a molecular graph and uses the OpenEye Toolkits to calculate features describing the removal of a proton.</div><div>These features are fed into a Scikit-learn Gaussian process to predict microscopic pK<sub>a</sub>s which are then used to analytically determine macroscopic pK<sub>a</sub>s.</div><div>Our Gaussian process is trained on a set of 2,700 macroscopic pK<sub>a</sub>s from monoprotic and select diprotic molecules.</div><div>Here, we share our results for microscopic and macroscopic predictions in the SAMPL6 challenge.</div><div>Overall, we ranked in the middle of the pack compared to other participants, but our fairly good agreement with experiment is still promising considering the challenge molecules are chemically diverse and often polyprotic while our training set is predominately monoprotic.</div><div>Of particular importance to us when building this model was to include an uncertainty estimate based on the chemistry of the molecule that would reflect the likely accuracy of our prediction. </div><div>Our model reports large uncertainties for the molecules that appear to have chemistry outside our domain of applicability, along with good agreement in quantile-quantile plots, indicating it can predict its own accuracy.</div><div>The challenge highlighted a variety of means to improve our model, including adding more polyprotic molecules to our training set and more carefully considering what functional groups we do or do not identify as ionizable. </div>


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4392
Author(s):  
Jia Zhou ◽  
Hany Abdel-Khalik ◽  
Paul Talbot ◽  
Cristian Rabiti

This manuscript develops a workflow, driven by data analytics algorithms, to support the optimization of the economic performance of an Integrated Energy System. The goal is to determine the optimum mix of capacities from a set of different energy producers (e.g., nuclear, gas, wind and solar). A stochastic-based optimizer is employed, based on Gaussian Process Modeling, which requires numerous samples for its training. Each sample represents a time series describing the demand, load, or other operational and economic profiles for various types of energy producers. These samples are synthetically generated using a reduced order modeling algorithm that reads a limited set of historical data, such as demand and load data from past years. Numerous data analysis methods are employed to construct the reduced order models, including, for example, the Auto Regressive Moving Average, Fourier series decomposition, and the peak detection algorithm. All these algorithms are designed to detrend the data and extract features that can be employed to generate synthetic time histories that preserve the statistical properties of the original limited historical data. The optimization cost function is based on an economic model that assesses the effective cost of energy based on two figures of merit: the specific cash flow stream for each energy producer and the total Net Present Value. An initial guess for the optimal capacities is obtained using the screening curve method. The results of the Gaussian Process model-based optimization are assessed using an exhaustive Monte Carlo search, with the results indicating reasonable optimization results. The workflow has been implemented inside the Idaho National Laboratory’s Risk Analysis and Virtual Environment (RAVEN) framework. The main contribution of this study addresses several challenges in the current optimization methods of the energy portfolios in IES: First, the feasibility of generating the synthetic time series of the periodic peak data; Second, the computational burden of the conventional stochastic optimization of the energy portfolio, associated with the need for repeated executions of system models; Third, the inadequacies of previous studies in terms of the comparisons of the impact of the economic parameters. The proposed workflow can provide a scientifically defendable strategy to support decision-making in the electricity market and to help energy distributors develop a better understanding of the performance of integrated energy systems.


2021 ◽  
Vol 13 (15) ◽  
pp. 3021
Author(s):  
Bufan Zhao ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Xiaoxing He ◽  
Weixing Xue ◽  
...  

Urban object segmentation and classification tasks are critical data processing steps in scene understanding, intelligent vehicles and 3D high-precision maps. Semantic segmentation of 3D point clouds is the foundational step in object recognition. To identify the intersecting objects and improve the accuracy of classification, this paper proposes a segment-based classification method for 3D point clouds. This method firstly divides points into multi-scale supervoxels and groups them by proposed inverse node graph (IN-Graph) construction, which does not need to define prior information about the node, it divides supervoxels by judging the connection state of edges between them. This method reaches minimum global energy by graph cutting, obtains the structural segments as completely as possible, and retains boundaries at the same time. Then, the random forest classifier is utilized for supervised classification. To deal with the mislabeling of scattered fragments, higher-order CRF with small-label cluster optimization is proposed to refine the classification results. Experiments were carried out on mobile laser scan (MLS) point dataset and terrestrial laser scan (TLS) points dataset, and the results show that overall accuracies of 97.57% and 96.39% were obtained in the two datasets. The boundaries of objects were retained well, and the method achieved a good result in the classification of cars and motorcycles. More experimental analyses have verified the advantages of the proposed method and proved the practicability and versatility of the method.


Sign in / Sign up

Export Citation Format

Share Document