scholarly journals Study of Handover Techniques for 4G Network MIMO Systems

2021 ◽  
Vol 15 ◽  
pp. 10-16
Author(s):  
Jian-Sing Wang ◽  
Jeng-Shin Sheu

For the upcoming 4G systems, network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC) are two of key techniques adopted in 4G systems to mitigate the serious inter-cell interference (ICI) and improve coverage and cell-edge throughput. Network MIMO is referred to as coordinated multi-point (CoMP) in LTE-A. In this paper, we propose a simulation platform to analyze the handover issue for downlink CoMP transmissions in LTE-A cellular systems. Among the variety of ICIC strategies, we apply the widely adopted soft frequency reuse (SFR) and the fractional frequency reuse (FFR) schemes. Both schemes are based on the idea of applying a frequency reuse factor of one in cell-center areas, and a higher reuse factor in cell-edge areas. Therefore, the ICI is reduced at the expense of the available frequency resources for each cell.

Author(s):  
Jan Garcia-Morales ◽  
Guillem Femenias ◽  
Felip Riera-Palou

In OFDMA networks, the use of universal frequency reuse plans improves cell capacity but causes very high levels of inter-cell interference (ICI), particularly affecting users located in the cell-edge regions.In order to mitigate ICI while achieving high spectral efficiencies, fractional frequency reuse (FFR) shows a good tradeoff between cell-edge throughput and overall cell spectral efficiency.Recently, multi-layer FFR-aided OFDMA-based designs, splitting the cell into inner, middle and outer layers have been proposed and studied with the aim of increasing the spectrum utilization and improving the user fairness throughout the cell.This paper presents an analytical framework allowing the performance evaluation and optimization of multi-layer FFR designs in OFDMA-based networks.Tractable mathematical expressions of the average cell throughput as well as the layer spectral efficiency have been derived for both proportional fair (PF) and round robin (RR) scheduling policies.


2014 ◽  
Vol 696 ◽  
pp. 183-190
Author(s):  
Yue Heng Li ◽  
Ming Hao Fu ◽  
Li Wang ◽  
Mei Yan Ju ◽  
Ping Huang

This paper focuses its research work on the capacity and outage performances of a distributed multiple-input multiple-output (DMIMO) system in a multi-cell environment. For this purpose, the multi-cell DMIMO structure is modeled first, and based on this model, the so-called blanket communication and selective communication schemes are compared, and the formula of the output signal to interference plus noise ratio (SINR) of the above two schemes are given to illustrate the way of an inter-cell interference affecting the system performance. Then the expressions of the average capacity and outage probability are derived by using the probability density function (PDF) of the output SINR in the preferred selective communication scheme with some necessary approximations. Finally, the computer simulations are provided to explore the possible rule of upper layer network scheduling in overcoming the inter-cell interferences and in optimizing the capacity and outage performances in the DMIMO systems.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 372 ◽  
Author(s):  
Ahmed Al-hubaishi ◽  
Nor Noordin ◽  
Aduwati Sali ◽  
Shamala Subramaniam ◽  
Ali Mohammed Mansoor

The reuse of the same pilot group across cells to address bandwidth limitations in a network has resulted in pilot contamination. This causes severe inter-cell interference at the targeted cell. Pilot contamination is associated with multicell massive multiple-input multiple-output (MIMO) systems which degrades the system performance even when extra arrays of antennas are added to the network. In this paper, we propose an efficient pilot assignment (EPA) scheme to address this issue by maximizing the minimum uplink rate of the target cell’s users. To achieve this, we exploit the large-scale characteristics of the fading channel to minimize the amount of outgoing inter-cell interference at the target cell. Results from the simulation show that the EPA scheme outperforms both the conventional and the smart pilot assignment (SPA) schemes by reducing the effect of inter-cell interference. These results, show that the EPA scheme has significantly improved the system performance in terms of achievable uplink rate and cumulative distribution function (CDF) for both signal-to-interference-plus-noise ratio (SINR), and uplink rate.


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Shichuan Ma ◽  
Lim Nguyen ◽  
Won Mee Jang ◽  
Yaoqing (Lamar) Yang

Self-encoded spread spectrum (SESS) is a novel communication technique that derives its spreading code from the randomness of the source stream rather than using conventional pseudorandom noise (PN) code. In this paper, we propose to incorporate SESS in multiple-input multiple-output (MIMO) systems as a means to combat against fading effects in wireless channels. Orthogonal space-time block-coded MIMO technique is employed to achieve spatial diversity, and the inherent temporal diversity in SESS modulation is exploited with iterative detection. Simulation results demonstrate that MIMO-SESS can effectively mitigate the channel fading effect such that the system can achieve a bit error rate of with very low signal-to-noise ratio, from 3.3 dB for a antenna configuration to just less than 0 dB for a configuration under Rayleigh fading. The performance improvement for the case is as much as 6.7 dB when compared to an MIMO PN-coded spread spectrum system.


2022 ◽  
Author(s):  
Chen Wei ◽  
Kui Xu ◽  
Zhexian Shen ◽  
Xiaochen Xia ◽  
Wei Xie ◽  
...  

Abstract In this paper, we investigate the uplink transmission for user-centric cell-free massive multiple-input multiple-output (MIMO) systems. The largest-large-scale-fading-based access point (AP) selection method is adopted to achieve a user-centric operation. Under this user-centric framework, we propose a novel inter-cluster interference-based (IC-IB) pilot assignment scheme to alleviate pilot contamination. Considering the local characteristics of channel estimates and statistics, we propose a location-aided distributed uplink combining scheme based on a novel proposed metric representing inter-user interference to balance the relationship among the spectral efficiency (SE), user equipment (UE) fairness and complexity, in which the normalized local partial minimum mean-squared error (LP-MMSE) combining is adopted for some APs, while the normalized maximum ratio (MR) combining is adopted for the remaining APs. A new closed-form SE expression using the normalized MR combining is derived and a novel metric to indicate the UE fairness is also proposed. Moreover, the max-min fairness (MMF) power control algorithm is utilized to further ensure uniformly good service to the UEs. Simulation results demonstrate that the channel estimation accuracy of our proposed IC-IB pilot assignment scheme outperforms that of the conventional pilot assignment schemes. Furthermore, although the proposed location-aided uplink combining scheme is not always the best in terms of the per-UE SE, it can provide the more fairness among UEs and can achieve a good trade-off between the average SE and computational complexity.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Sign in / Sign up

Export Citation Format

Share Document