scholarly journals The initial research on the compressive strength of mortar when using bottom ash from thermal power plants to replace natural sand in construction

2020 ◽  
Vol 61 (3) ◽  
pp. 12-18
Author(s):  
Hung Van Nguyen ◽  
Son Truong Bui ◽  
Hai Huu Phung ◽  
Ha Ngoc Thi Pham ◽  

The paper presents the compressive strength of mortar samples when replacing natural sand by bottom ash of An Khanh and Cao Ngan thermal power plants (TPPs) in Thai Nguyen province. Experimental research is the main method applied in this research. Research results show that replacing natural sand by bottom ash in the two TPPs, the compressive strength of samples reached the required mortar’s strength. The compressive strength of the mortar sample replaced all-natural sand, particularly for masonry mortar and plastering mortar, is 10.9 MPa and 16.4 MPa respectively for An Khánh TTP, and 12.7 MPa and 12.6 MPa for Cao Ngan TTP, while the compressive strength of the motar used all natural sand, reached 13.2 MPa and 8.6 MPa.

2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


2018 ◽  
Vol 37 (3) ◽  
pp. 210-218
Author(s):  
Cansu Demir ◽  
Ülkü Yetiş ◽  
Kahraman Ünlü

Thermal power plants are of great environmental importance in terms of the huge amounts of wastes that they produce. Although there are process-wise differences among these energy production systems, they all depend on the logic of burning out a fuel and obtaining thermal energy to rotate the turbines. Depending on the process modification and the type of fuel burned, the wastes produced in each step of the overall process may change. In this study, the most expected process and non-process wastes stemming from different power generation processes have been identified and given their European Waste Codes. Giving priority to the waste minimization options for the most problematic wastes from thermal power plants, waste management strategies have been defined. In addition, by using the data collected from site visits, from the literature and provided by the Turkish Republic Ministry of Environment and Urbanization, waste generation factor ranges expressed in terms of kilogram of waste per energy produced annually (kg/MWh) have been estimated. As a result, the highest generation was found to be in fly ash (24–63 for imported coal, 200–270 for native coal), bottom ash (1.3–6 for imported coal, 42–87 for native coal) and the desulfurization wastes (7.3–32) produced in coal combustion power plants. The estimated waste generation factors carry an important role in that they aid the authorities to monitor the production wastes declared by the industries.


2021 ◽  
Vol 96 (4) ◽  
pp. 107-112
Author(s):  
YU.S. FILIMONOVA ◽  
◽  
E.G. VELICHKO ◽  

Modification of the composition and structure of heavy concrete with the use of a complex chemical-mineral additive consisting of fly ash from thermal power plants, a superplasticizer, a high-valence hardening accelerator AC and a fine-dispersed clinker component is considered. Modified concrete is characterized by an increase in compressive strength at a brand age by 67%, a decrease in the water content of a concrete mixture by 13.6% and an improvement in its workability by 11-12 cm. With the combined use of a superplasticizer and a high-valence hardening accelerator AC a significant synergistic effect is observed in the format of enhancing their plasticizing effect. The high efficiency of the application of the mixed-dispersed clinker component has been established.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Nu Nguyen Thi ◽  
Thinh Phi Hong ◽  
Son Bui Truong

In Vietnam, a large amount of coal bottom ash (CBA) is being discharged from thermal power plants and has been making serious environmental pollution. It is essential to utilize the CBA to reduce environmental pollution. So, this paper presents a series of experimental studies in the laboratory using CBA as a partial replacement of aggregates in concrete pavement for rural roads. In mixing concrete, the CBA is utilized to replace 15, 30, and 100% aggregates. The design of the composition must achieve the technical requirement of M-30 grade of concrete. A total 351 of specimens were tested on workability of fresh concrete, abrasion, compressive strength, and flexural tensile strength in order to achieve the technical requirement of concrete pavement for rural roads. Based on the experimental results, in order to achieve the required compressive strength, An Khanh CBA concrete uses more content of cement and water than control concrete; Cao Ngan CBA is only utilized to replace 15% aggregates, and Cao Ngan CBA concrete also uses more cement and water than control concrete. It also shown that the amount of water and cement content depend on types of CBA and the water amount and cement content of CBA concrete are larger than those of control concrete. The advantage of mixture CBA concrete is abrasion, and flexural tensile strength achieved the value as per the technical requirement.


2017 ◽  
Vol 5 (6) ◽  
pp. 152-158
Author(s):  
Kai Kannan ◽  
R Vijaya Kumar

Since  the  construction  industry  is  developing  very  fast  the  requirement  of  concrete  and  their constituent  materials are also increasing day by day. Hence the need becomes in evitable to find various alternate means for the aggregate and accordingly the researchers are going on in this way. But the availability of fine aggregate becomes difficult day by day.  Hence the need arises to find alternative for the fine aggregate. The material which is known as bottom ash is available ash waste by-product material from the thermal power plants.  In  India  most  of  the  thermal  power plants  use  wet  system  for disposal of ash. Bottom ash will be generated as a residue after burning pulverised coal at boiler cyclone and collected from bottom ash hopper located under boiler structure. In this project work the material bottom ash is experimentally analysed and studied for its suitability as replacement as fine aggregate up to (0% to 50%). So far few researchers analysed its suitability as FA by finding the compressive strength of concrete. But  in  this  project  work the  split  tensile  strength  of  concrete  and  flexural  strength  of concrete were analysed by replacing bottom ash as fine aggregate.


Technobius ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 0003
Author(s):  
Aliya Aldungarova ◽  
Kapar Aryngazin ◽  
Vladimir Larichkin ◽  
Assem Abisheva ◽  
Kamilla Alibekova

The paper describes the technology of manufacturing a construction product by vibrocompression using ash and slag waste from thermal power plants in the Pavlodar region. The task of the experimental research was to obtain a hollow wall stone based on ash and slag waste with a strength grade that is not inferior to products made according to the traditional recipe. The obtained samples with different ratios of components in the mixture were investigated for compressive strength, moisture absorption, frost resistance. It has been established that when ash and slag waste are added to the composition of the concrete mixture in an amount of up to 35 % of the mass of dry components, the strength characteristics of the hollow wall stone correspond to the selected brand


2018 ◽  
Vol 230 ◽  
pp. 03019 ◽  
Author(s):  
Volodymyr Shulgin ◽  
Dmytro Yermolenko ◽  
Heorhii Durachenko ◽  
Oleksandr Petrash ◽  
Oksana Demchenko

This paper addresses the issue of the influence of cement consumption, plasticizing additive, and compaction time on the strength and frost resistance of concrete manufactured with bottom ash slags from thermal power plants. The investigation was carried out using the three-factor experiment with variables varied at three levels. There were received response functions, which characterize the correlation between frost resistance and variables: cement consumption, plasticizer additives and compaction time. An analysis of the surface of the response function, where the frost resistance of the concrete was accepted as a response, revealed the optimal correlation between the components of the mixture and the compaction time of the seal. By using the STATISTICA 12 software complex, the values of the factors were specified, when the optimal components ratio with GLENIUM 51 superplasticizer is achieved for the production of concrete with high frost resistance that is greater than F300. The conclusions quantify the results of the investigation.


Author(s):  
Nitish Kumar

Abstract: In India, major part of electricity is produced from thermal power plants. These thermal power plants use different types of fuels for combustion. During combustion of coal as a fuel in these thermal power plants, a byproduct namely fly ash is produced. Indian coal has highest ash content as compared to coal found in other countries. There are nearly 85 thermal power plants in India which uses coal as source for power generation and thus produces a large amount of fly ash. This fly ash is disposed in soil, which in turn causes a lot of environmental problems. To overcome this disposal of fly ash into the soil, it can be used in concrete by partially replacing with cement. This study deals with investigation for M25 Grade of newlineconcrete to study the mechanical properties of Steel fiber reinforced concrete newline(SFRC) containing fiber of an interval of 0.5% from 0.0% to 2.0% by new line weight of cement. In this study are steel fibres are used and compare properties with conventional concrete. In this study we are casting 6 cubes and 6 cylinders out of which 2 each for 7, 14, 28 days. Keywords: Steel fibres, Cement and Compressive Strength, GGBS, Fly Ash, SFRC, Cement, Compressive Strength, Split Tensile Strength


2019 ◽  
Vol 12 (6) ◽  
pp. 157-162
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

This paper brings out the results of experimental work carried out in the laboratory to evaluate the effectiveness of using bottom ash with geogrid for soil stabilization by studying the compaction and strength characteristics for use as a sub-grade material. Bottom ash is a waste material which is obtained from thermal power plants. This waste imposes hazardous effect on environment and human health. This material cannot be disposed of properly and their disposal is not economical. Utilization by exploiting their inherent properties is the one of the way to solve the above stated problem. The effect of mixing different proportions of bottom ash with geogrid in clayey soil on compaction, UCS and California bearing ratio have been studied in this study.


Sign in / Sign up

Export Citation Format

Share Document