scholarly journals U - Pb geochronology and composition of zircon mineral from granodiorite in the G18 Gold mine, Quang Nam and its significance in regional tectonics

2021 ◽  
Vol 62 (2) ◽  
pp. 1-11
Author(s):  
Thanh Xuan Ngo ◽  
Hau Vinh Bui ◽  
Hai Thanh Tran ◽  
Binh Van Phan ◽  
Bat Van Dang ◽  
...  

The Tam Ky - Phuoc Son suture zone (TPSZ) is located in central Indochina and is referred to as a amalgamation site between the Truong Son and Kon Tum terranes during the early Paleozoic. The amphibolite and ultramafic rocks within the region were considered as a part of the Tam Ky - Phuoc Son ophiolitic complex. In this study, the authors present results of the U - Pb dating and trace element composition of the zircon grains derived from a granodioritic sample collected in the G18 gold mine in Quang Nam province in order to clarify the timing of magma emplacement and tectonic setting. The U - Pb dating data indicates that the granodioritic rocks formed at 447,4±2,9 Ma while the U/Yb ratio is ̴1 (average: 1.32) and the Sc/Yb ratio is ̴ 1.04, high Hf content (Average Hf: 10937 ppm) and low Yb content (Average Yb: 308 ppm). These geochemical values are comparable with the zircon, which is formed in the continental magmatic arc. Combination with the pre - existing data allowed us to confirm the existence of two contrast magma members in the North Kontum massif: The Middle Cambrian island arc complex and the Middle Ordovician continental complex.

Geology ◽  
2021 ◽  
Author(s):  
Elliot K. Foley ◽  
R.A. Henderson ◽  
E.M. Roberts ◽  
A.I.S. Kemp ◽  
C.N. Todd ◽  
...  

The tectonic setting of the Australian sector of the eastern Gondwanan margin during the Jurassic and Cretaceous is enigmatic. Whether this involved convergent tectonism and a long-lived continental magmatic arc or rift-related extension unrelated to subduction is debated. The paucity of Australian Jurassic–Cretaceous igneous outcrops makes resolving these competing models difficult. We used the detrital zircon record of the Jurassic–Cretaceous Great Australian Superbasin (GAS) as a proxy for igneous activity. We attribute the persistent magmatism recorded in GAS sedimentary fill throughout the Mesozoic to ca. 95 Ma to continuation of the established Paleozoic continental arc system. The detrital zircon record signals short (~10 m.y.) pulses of elevated Jurassic and Cretaceous magmatic activity and strongly positive εHf values, indicating juvenile crust or mantle-derived magmatism. Margin reconstruction indicates sustained continental growth at rates of at least ~55 km3 km–1 m.y.–1, mainly to the tract now represented by submerged northern Zealandia, due to the retreat of this arc system. We posit that arc retreat was a key factor in rapid crust generation and preservation, and that continental sedimentary systems globally may host cryptic records of juvenile crustal addition that must be considered in estimating crustal growth rates along convergent plate margins.


1991 ◽  
Vol 28 (7) ◽  
pp. 1121-1130 ◽  
Author(s):  
Michel Villeneuve ◽  
Jean-Jacques Cornée

Paleogeographic reconstructions of Paleozoic time are presented for the northwest margin of the West-African Craton. An extensional regime and a marine transgression were dominant during the Early Cambrian. During the Middle Cambrian, the Rokélides orogen was responsible for the sea regression to the south, while the proto-Atlantic opening was active to the north of the Reguibat shield. A large stable marine platform was present during Early and Middle Ordovician. A general regression and the formation of the West-African Inlandsis took place during the Late Ordovician. During Silurian time, this sea transgressed over most of the African platform. Incipient Hercynian deformations during the Early Devonian produced horsts and grabens in Morocco. At the end of the Devonian and the beginning of the Carboniferous, the sea was restricted to isolated basins and tectonic trenches. Collision between West Africa and North America during the Late Carboniferous transformed the Lower Paleozoic margin into an Hercynian orogenic belt, whose structure is controlled by the presence of crustal blocks, generated as early as the Cambrian, and probably reflecting, in turn, older Panafrican zones of weakness. [Translated by the Journal]


1993 ◽  
Vol 57 (389) ◽  
pp. 575-589 ◽  
Author(s):  
Pavel K. Kepezhinskas ◽  
Rex N. Taylor ◽  
Hisao Tanaka

AbstractUltramafic to marie plutons in the Olyutor Range, North Kamchatka, represent the magmatic roots of a late Eocene arc, related to the westward subduction of the Komandorsky Basin beneath the Asian continental margin. Olyutor Range plutons are concentrically zoned with cumulate dunite cores mantled by a wehrlite-pyroxenite transitional zone and, in turn, by a narrow gabbroic rim.Spinel is a common accessory mineral in these arc plutonics, and we present analyses of spinels from a range of lithologies. A continuous compositional trend is observed from Cr-spinel in the ultramafics to Cr-rich magnetite in marginal gabbros. Complex chemical zoning patterns within individual spinel grains suggest an interplay between fO2, fractionation, volatile content and subsequent sub-solidus reequilibration of spinel with co-existing silicates (mainly olivine).In general, the spinels from magmatic arc environments are characterised by high total Fe and high Fe3+ contents compared to MORB and boninitic spinels and higher Cr-values relative to oceanic basin spinels. These differences imply a high oxygen fugacity during arc petrogenesis. Differences are also observed between plutonic spinels from arcs and low-Ti supra-subduction zone ophiolites. Low-Ti ophiolitic spinels are generally poorer in iron and richer in Cr, and hence are similar in composition and perhaps tectonic setting to fore-arc boninitic spinels.


Tectonics ◽  
2017 ◽  
Vol 36 (12) ◽  
pp. 3254-3276 ◽  
Author(s):  
K. B. Sauer ◽  
S. M. Gordon ◽  
R. B. Miller ◽  
J. D. Vervoort ◽  
C. M. Fisher

2018 ◽  
Author(s):  
Colin P. Phillips ◽  
◽  
Robert B. Miller ◽  
Kirsten B. Sauer ◽  
Stacia M. Gordon

Author(s):  
Terence P. Fletcher ◽  
Adrian W. A. Rushton

ABSTRACTDark limestones in the old quarries at Leny, Perthshire contain sparse beds with tiny fossils. They are poorly preserved and, though barely affected by the Ordovician Grampian Event tectonism, there is some taphonomic distortion and many are corroded along stylolitised horizons. The fauna mainly comprises trilobites of two types, open-ocean miomerids and polymerid shelf dwellers. MiomeridsCondylopygecf.eliandKiskinella cristataindicate a stratigraphical position equivalent to the base of the paradoxidid Amgan Stage of Siberia; traditionally regarded as ‘Middle Cambrian’. However, the bulk of the Leny miomerids, notably species ofPagetides, are forms described from the outer edge of Laurentia, within theBonnia–OlenellusZone, where it is considered to be ‘Lower Cambrian’. The Leny polymerids were likely transported off-shelf and some are conspecific with taxa in the Laurentian allochthonous Quebec and New York successions of the Early–Middle Ordovician (Taconic) Appalachian Orogen. The Leny Limestone and Shale Member of the Keltie Water Grit Formation is part of the Dalradian Supergroup deposited in an off-shelf Caledonide Grampian Terrane of the Humber Tectonostratigraphical Zone, midway between the North American successions and the Greenland Caledonides.Additional to the trilobites, brachiopods, sponges, hyoliths, bradoriids and a selection of indeterminable organic fragments occur; none of which has any particular age significance.


2004 ◽  
Vol 141 (5) ◽  
pp. 583-603 ◽  
Author(s):  
OSMAN PARLAK ◽  
VOLKER HÖCK ◽  
HÜSEYİN KOZLU ◽  
MICHEL DELALOYE

A number of Late Cretaceous ophiolitic bodies are located between the metamorphic massifs of the southeast Anatolian orogenic system. One of them, the Göksun ophiolite (northern Kahramanmaraş), which crops out in a tectonic window bounded by the Malatya metamorphic units on both the north and south, is located in the EW-trending nappe zone of the southeast Anatolian orogenic belt between Göksun and Afşin (northern Kahramanmaraş). It consists of ultramafic–mafic cumulates, isotropic gabbro, a sheeted dyke complex, plagiogranite, volcanic rocks and associated volcanosedimentary units. The ophiolitic rocks and the tectonically overlying Malatya–Keban metamorphic units were intruded by syn-collisional granitoids (∼ 85 Ma). The volcanic units are characterized by a wide spectrum of rocks ranging in composition from basalt to rhyolite. The sheeted dykes consist of diabase and microdiorite, whereas the isotropic gabbros consist of gabbro, diorite and quartzdiorite. The magmatic rocks in the Göksun ophiolite are part of a co-magmatic differentiated series of subalkaline tholeiites. Selective enrichment of some LIL elements (Rb, Ba, K, Sr and Th) and depletion of the HFS elements (Nb, Ta, Ti, Zr) relative to N-MORB are the main features of the upper crustal rocks. The presence of negative anomalies for Ta, Nb, Ti, the ratios of selected trace elements (Nb/Th, Th/Yb, Ta/Yb) and normalized REE patterns all are indicative of a subduction-related environment. All the geochemical evidence both from the volcanic rocks and the deeper levels (sheeted dykes and isotropic gabbro) show that the Göksun ophiolite formed during the mature stage of a suprasubduction zone (SSZ) tectonic setting in the southern branch of the Neotethyan ocean between the Malatya–Keban platform to the north and the Arabian platform to the south during Late Cretaceous times. Geological, geochronological and petrological data on the Göksun ophiolite and the Baskil magmatic arc suggest that there were two subduction zones, the first one dipping beneath the Malatya–Keban platform, generating the Baskil magmatic arc and the second one further south within the ocean basin, generating the Göksun ophiolite in a suprasubduction zone environment.


2010 ◽  
Vol 33 (2) ◽  
pp. 277
Author(s):  
Juan A. Murra ◽  
Edgardo G. Baldo

An important magmatic and tectonometamorphic activity of Early and Middle Ordovician age is registered in the pre-Andean basement of the Sierras Pampeanas of Argentina. These were linked to the development of a continental magmatic arc during the Famatinian Orogeny, resulting from the approach and attachment of an alleged exotic terrane (the Precordillera Terrane), to the south western Gondwana's margin (present coordinates). A suit of meta-mafic and ultramafic rocks are exposed in the Sierras de La Huerta and Las Imanas, at the western limit of the famatinian orogen. Metaperidotites (Ol-Opx-Cpx-Am-Spl), coronitic metapyroxenites (Opx-Cpx-Spl-Am-Pl), metaquartz-norites (Opx-Pl-Am-Qtz-Bt±Grt) and metadiorites (Pl-Am-Qtz-Bt-Ep) are associated with metasedimentary rocks (marbles, gneisses and migmatites with Sil+Kfs+Grt) that reached the peak and post-peak conditions of metamorphism at middle Ordovician time. The meta-mafic rocks record a first high-grade metamorphic event (M1-730ºC and 8.4±0.5 kbar) and a second lower pressure event (M2, 720ºC and 4.5 kbar) with Cum+Hbl+Mag in a coronitic assemblage. The meta-ultramafic rocks also record the two metamorphic events, but only for the second one it was possible to calculate the P-T conditions. At latitude 32º30'S, the Famatinian magmatic arc shows a systematic compositional variation normal to its trend, i.e. in an east-west direction, which could be related to present erosion levels. In this context, the mafic and ultramafic units of Sierras de La Huerta and Las Imanas, probably represent the deepest levels of the magmatic arc which is consistent with the position that they show marginal to the orogenic belt, i.e., where the uplift and erosion rates were larger.


2018 ◽  
Vol 1 ◽  
pp. 00006 ◽  
Author(s):  
Eko Bayu Purwasatriya ◽  
Sugeng Sapto Surjono ◽  
Donatus Hendra Amijaya

<p>This study attempts to reconstruct paleogeography of Banyumas Basin in association with magmatic arc evolution and its implication to petroleum potential. Based on the volcanic rocks distribution, their association and relatives age, there are three alignments of a magmatic arc, that are: (1) Oligo-Miocene arc in the south (2) Mio-Pliocene arc in the middle (3) Plio-Pleistocene arc in the north. The consequences of the magmatic arc movement were tectonic setting changing during Oligocene to Pleistocene, as well as their paleogeography. During Oligo-Miocene where magmatic arc existed in the southern part, the Banyumas tectonic setting was a back-arc basin. This tectonic setting was changing to intra-arc basin during Mio-Pliocene and subsequently to fore-arc basin since Plio-Pleistocene until today. Back-arc basin is the most suitable paleogeography to create a depositional environment for potential source rocks. Exploration activity to prove the existence of source rocks during Oligo-Miocene is needed to reveal petroleum potential in Banyumas Basin.<br></p>


2017 ◽  
Vol 44 (3) ◽  
pp. 307 ◽  
Author(s):  
Carlos Alberto García-Ramírez ◽  
Vanessa Rey León ◽  
Víctor Alejandro Valencia

The Orthogneiss unit in the Santander Massif, Northern Colombian Andes, mainly consists of quartzfeldspathic, pelitic and minor mafic orthogneisses and amphibolites. Petrographic, geochemical and geochronological studies carried out on orthogneisses from the Silos-Babega belt, indicate that they are granodioritic and granitic in composition with protolith formed by crustal melting in an active continental magmatic arc. They were syntectonically emplaced in the Silgara Schists unit. Metamorphic peak of the Orthogneiss unit reach amphibolite facies conditions in the range of 4.3-10 kbar in pressure and 540-690 °C in temperature. Zircon U-Pb LA-ICP-MS ages of 471±11 and 479±10 Ma were obtained and these ages are similar to those known for the Orthogneiss unit in the central and the eastern Santander Massif and confirm the continuity to the north of the Andean protomargin as a result of the Famatinian orogeny.


Sign in / Sign up

Export Citation Format

Share Document