scholarly journals Ortoneises en la Franja Silos-Babega, Macizo de Santander, Colombia: evidencias de la orogenia famatiniana en los Andes del norte

2017 ◽  
Vol 44 (3) ◽  
pp. 307 ◽  
Author(s):  
Carlos Alberto García-Ramírez ◽  
Vanessa Rey León ◽  
Víctor Alejandro Valencia

The Orthogneiss unit in the Santander Massif, Northern Colombian Andes, mainly consists of quartzfeldspathic, pelitic and minor mafic orthogneisses and amphibolites. Petrographic, geochemical and geochronological studies carried out on orthogneisses from the Silos-Babega belt, indicate that they are granodioritic and granitic in composition with protolith formed by crustal melting in an active continental magmatic arc. They were syntectonically emplaced in the Silgara Schists unit. Metamorphic peak of the Orthogneiss unit reach amphibolite facies conditions in the range of 4.3-10 kbar in pressure and 540-690 °C in temperature. Zircon U-Pb LA-ICP-MS ages of 471±11 and 479±10 Ma were obtained and these ages are similar to those known for the Orthogneiss unit in the central and the eastern Santander Massif and confirm the continuity to the north of the Andean protomargin as a result of the Famatinian orogeny.

Tectonics ◽  
2017 ◽  
Vol 36 (12) ◽  
pp. 3254-3276 ◽  
Author(s):  
K. B. Sauer ◽  
S. M. Gordon ◽  
R. B. Miller ◽  
J. D. Vervoort ◽  
C. M. Fisher

2018 ◽  
Author(s):  
Colin P. Phillips ◽  
◽  
Robert B. Miller ◽  
Kirsten B. Sauer ◽  
Stacia M. Gordon

2012 ◽  
Vol 149 (5) ◽  
pp. 927-939 ◽  
Author(s):  
A. RUBIO-ORDÓÑEZ ◽  
P. VALVERDE-VAQUERO ◽  
L. G. CORRETGÉ ◽  
A. CUESTA-FERNÁNDEZ ◽  
G. GALLASTEGUI ◽  
...  

AbstractThe Zarza la Mayor and Zarza de Montánchez tonalites and Arroyo de la Luz granodiorite are part of a tonalitic–granodioritic belt located along the Schistose-Greywacke Domain of the Central Iberian Zone. These intrusions are also part of the Central Extremadura Batholith, a set of plutons ranging from tonalite to leucogranite that have been considered a prime example of Variscan syn-kinematic plutonism. New LA-ICP-MS and CA-ID-TIMS U–Pb dating reveals that the Zarza la Mayor tonalite–granodiorite is an Early Ordovician intrusion. The LA-ICP-MS data show that there is an absence of inherited cores, despite some complex internal zoning with obvious resorption features in some of the zircon crystals. Dating of monazite and zircon by CA-ID-TIMS provides a concordant age of 478.1 ± 0.8 Ma. This age coincides with electron microprobe analysis (EMPA) monazite chemical ages for the Zarza de Montánchez (482 ± 10 Ma) and Arroyo de la Luz (470 ± 15 Ma) intrusions. These new data indicate the presence of an Early Ordovician belt of calc-alkaline tonalite–granodiorite in the Schistose-Greywacke Domain – the Beira Baixa–Central Extremadura tonalite–granodiorite belt – which resembles a continental magmatic arc. This belt is contemporaneous with the Ollo de Sapo magmatic event further north in the Central Iberian Zone.


2021 ◽  
Vol 62 (2) ◽  
pp. 1-11
Author(s):  
Thanh Xuan Ngo ◽  
Hau Vinh Bui ◽  
Hai Thanh Tran ◽  
Binh Van Phan ◽  
Bat Van Dang ◽  
...  

The Tam Ky - Phuoc Son suture zone (TPSZ) is located in central Indochina and is referred to as a amalgamation site between the Truong Son and Kon Tum terranes during the early Paleozoic. The amphibolite and ultramafic rocks within the region were considered as a part of the Tam Ky - Phuoc Son ophiolitic complex. In this study, the authors present results of the U - Pb dating and trace element composition of the zircon grains derived from a granodioritic sample collected in the G18 gold mine in Quang Nam province in order to clarify the timing of magma emplacement and tectonic setting. The U - Pb dating data indicates that the granodioritic rocks formed at 447,4±2,9 Ma while the U/Yb ratio is ̴1 (average: 1.32) and the Sc/Yb ratio is ̴ 1.04, high Hf content (Average Hf: 10937 ppm) and low Yb content (Average Yb: 308 ppm). These geochemical values are comparable with the zircon, which is formed in the continental magmatic arc. Combination with the pre - existing data allowed us to confirm the existence of two contrast magma members in the North Kontum massif: The Middle Cambrian island arc complex and the Middle Ordovician continental complex.


2006 ◽  
Vol 143 (5) ◽  
pp. 679-697 ◽  
Author(s):  
ULF B. ANDERSSON ◽  
KARIN HÖGDAHL ◽  
HÅKAN SJÖSTRÖM ◽  
STEFAN BERGMAN

The Svecofennian Domain of the Fennoscandian Shield constitutes a considerable volume of Palaeoproterozoic crustal growth, 2.1–1.86 Ga ago, in between the Archaean craton in the NE and the 1.85–1.65 Ga Transscandinavian Igneous Belt (TIB) in the south and west. The Bergslagen area is a classical ore province located in the southwestern part of the Svecofennian Domain of south-central Sweden. Its northern part is dominated by volcanic and plutonic rocks of a magmatic arc with continental affinity, while the SE part is made up by a sedimentary basin. The Bergslagen area shows a metamorphic zonation from lower to middle amphibolite facies in the north to upper amphibolite facies and locally granulite facies in the south; a small greenschist area exists in the west. Identifying the age spectra of inherited components, magmatic crystallization, as well as metamorphic episodes, provide important constraints on the geodynamic evolution of this centrally located piece of the Shield.U–Pb zircon SIMS data presented in this paper complement the previous, regionally scattered TIMS data from this area. Magmatic zircons from two felsic metavolcanic rocks and two amphibolites (metagabbros) yield 1888±12, 1892±7 and 1887±5, 1895±5 Ma, respectively; i.e. within the 1.91–1.86 Ga range previously obtained for Early Svecofennian magmatism in Bergslagen. An augen gneiss from southern Bergslagen, assigned to the earliest TIB generation, yield an intrusive age of 1855±6 Ma. Metamorphic monazites from the same rock indicate that deformation and elevated thermal activity prevailed 1.83–1.82 Ga ago (TIMS). Metamorphic zircons in high-grade metasedimentary rocks from the south and west yield ages of 1793±5 and 1804±10 Ma, in accordance with ages for regional peak metamorphism and migmatite formation found elsewhere in the southern Svecofennian province of Sweden. More importantly, a few zircon crystals and overgrowths in rocks from the north indicate an early metamorphic episode at c. 1.87 Ga, indicating that Bergslagen has experienced two major metamorphic events. Detrital and inherited zircons span the range 2.78–1.90 Ga, with an apparent gap at 2.45–2.1 Ga, which further emphasize previous observations of a major juvenile (<2.1 Ga) and a minor Archaean provenance. This, and in particular the 1.94–1.91 Ga crystals present in the c. 1.89 Ga amphibolites, support the suggestion of a former Palaeoproterozoic pre-1.91 Ga crust in the Bergslagen area.


Lithosphere ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 460-477 ◽  
Author(s):  
Kirsten B. Sauer ◽  
Stacia M. Gordon ◽  
Robert B. Miller ◽  
Jeffrey D. Vervoort ◽  
Christopher M. Fisher

2007 ◽  
Vol 79 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Cláudia R. Passarelli ◽  
Miguel A.S. Basei ◽  
Hélcio J. Prazeres-Filho ◽  
Oswaldo Siga-Jr. ◽  
Gergely A.J. Szabó ◽  
...  

The Juréia Massif, southeastern São Paulo State (Brazil), is part of the Registro Domain, limited to the north by the Cubatão-Itariri Shear System and to the south by the Serrinha Shear Zone. Mostly composed of migmatitic granitegneiss rocks, represents a Paleoproterozoic terrane (1.9-2.2 Ga) strongly deformed during the Neoproterozoic (750-580 Ma). The present tectonic scenario was established at the end of the Neoproterozoic, as a result of collages associated with the formation of Western Gondwana. The Ponta da Juréia, our study area within the Juréia Massif, is constituted by paragneisses (garnet-muscovite-biotite gneisses). The monazite U-Pb age of 750 Ma is related to a main regional metamorphic event that reached the high amphibolite facies, recorded in rocks from the Itatins Complex and Cachoeira Sequence as well, which also belongs to the Registro Domain. The paragneissic rocks of this study are affected by the E-W-trending Serrinha Shear Zone, registering a predominantly dextral movement. Biotite K-Ar ages of 482 ± 12 Ma may represent later movements and reflect the younger ages of reactivation of the major lineaments and juxtaposition of the tectonic blocks involved.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


Sign in / Sign up

Export Citation Format

Share Document