scholarly journals Oligocene-Pleistocene Paleogeography within Banyumas Basin and implication to petroleum potential

2018 ◽  
Vol 1 ◽  
pp. 00006 ◽  
Author(s):  
Eko Bayu Purwasatriya ◽  
Sugeng Sapto Surjono ◽  
Donatus Hendra Amijaya

<p>This study attempts to reconstruct paleogeography of Banyumas Basin in association with magmatic arc evolution and its implication to petroleum potential. Based on the volcanic rocks distribution, their association and relatives age, there are three alignments of a magmatic arc, that are: (1) Oligo-Miocene arc in the south (2) Mio-Pliocene arc in the middle (3) Plio-Pleistocene arc in the north. The consequences of the magmatic arc movement were tectonic setting changing during Oligocene to Pleistocene, as well as their paleogeography. During Oligo-Miocene where magmatic arc existed in the southern part, the Banyumas tectonic setting was a back-arc basin. This tectonic setting was changing to intra-arc basin during Mio-Pliocene and subsequently to fore-arc basin since Plio-Pleistocene until today. Back-arc basin is the most suitable paleogeography to create a depositional environment for potential source rocks. Exploration activity to prove the existence of source rocks during Oligo-Miocene is needed to reveal petroleum potential in Banyumas Basin.<br></p>

2004 ◽  
Vol 141 (5) ◽  
pp. 583-603 ◽  
Author(s):  
OSMAN PARLAK ◽  
VOLKER HÖCK ◽  
HÜSEYİN KOZLU ◽  
MICHEL DELALOYE

A number of Late Cretaceous ophiolitic bodies are located between the metamorphic massifs of the southeast Anatolian orogenic system. One of them, the Göksun ophiolite (northern Kahramanmaraş), which crops out in a tectonic window bounded by the Malatya metamorphic units on both the north and south, is located in the EW-trending nappe zone of the southeast Anatolian orogenic belt between Göksun and Afşin (northern Kahramanmaraş). It consists of ultramafic–mafic cumulates, isotropic gabbro, a sheeted dyke complex, plagiogranite, volcanic rocks and associated volcanosedimentary units. The ophiolitic rocks and the tectonically overlying Malatya–Keban metamorphic units were intruded by syn-collisional granitoids (∼ 85 Ma). The volcanic units are characterized by a wide spectrum of rocks ranging in composition from basalt to rhyolite. The sheeted dykes consist of diabase and microdiorite, whereas the isotropic gabbros consist of gabbro, diorite and quartzdiorite. The magmatic rocks in the Göksun ophiolite are part of a co-magmatic differentiated series of subalkaline tholeiites. Selective enrichment of some LIL elements (Rb, Ba, K, Sr and Th) and depletion of the HFS elements (Nb, Ta, Ti, Zr) relative to N-MORB are the main features of the upper crustal rocks. The presence of negative anomalies for Ta, Nb, Ti, the ratios of selected trace elements (Nb/Th, Th/Yb, Ta/Yb) and normalized REE patterns all are indicative of a subduction-related environment. All the geochemical evidence both from the volcanic rocks and the deeper levels (sheeted dykes and isotropic gabbro) show that the Göksun ophiolite formed during the mature stage of a suprasubduction zone (SSZ) tectonic setting in the southern branch of the Neotethyan ocean between the Malatya–Keban platform to the north and the Arabian platform to the south during Late Cretaceous times. Geological, geochronological and petrological data on the Göksun ophiolite and the Baskil magmatic arc suggest that there were two subduction zones, the first one dipping beneath the Malatya–Keban platform, generating the Baskil magmatic arc and the second one further south within the ocean basin, generating the Göksun ophiolite in a suprasubduction zone environment.


2018 ◽  
Vol 69 (4) ◽  
pp. 410-436 ◽  
Author(s):  
Magdalena Pupp ◽  
Achim Bechtel ◽  
Reinhard Gratzer ◽  
Maria Heinrich ◽  
Sharadiya Kozak ◽  
...  

Abstract Oligocene successions in the North Alpine Foreland Basin (NAFB) and the Western Carpathians reflect Paratethys-wide paleogeographic changes, which also control their petroleum potential. Whereas these rocks have been studied in detail in both areas, the transition zone is still under-researched. In order to fill this gap, the Oligocene succession in the Waschberg Zone, comprising the Ottenthal Formation (NP21–23) and the overlying Thomasl Formation (NP23–24) has been studied using outcrop (Waldweg section) and borehole samples (Thomasl, Poysdorf) and a multidisciplinary approach. The Ottenthal Formation is subdivided from base to top into marls and shales (Ottenthal Mbr.), diatomaceous shales (Galgenberg Mbr.) and marlstones (Dynow Mbr.). Biogenic silica contents, determined using atomic absorption spectroscopy, reach 30 wt. % in the carbonate-free Galgenberg Member, but also in the Dynow Members, which is characterized by upward decreasing productivity of calcareous nannoplankton. Close lithological relations exist with the Oligocene succession in the NAFB, but diatoms are largely missing in the latter. Organic matter contents are surprisingly low in the Ottenthal and Thomasl formations in the Waldweg section, which therefore are poor hydrocarbon source rocks. In contrast, the Thomasl Formation, encountered in the Thomasl and Poysdorf boreholes, holds a fair to good hydrocarbon potential (~ 2.2–2.5 wt. % TOC; type III and type II kerogen) and may generate 1.0 to 1.6 tons of hydrocarbons/m2. Obviously TOC contents of borehole samples are significantly higher than in outcrop samples. Because of severe indications of weathering (e.g., presence of gypsum and jarosite), a detrimental effect of weathering on the samples from the Waldweg section cannot be excluded. Biomarker data suggest a nearshore depositional environment with changing oxygen-availability and salinity. Vitrinite reflectance measurements show that the investigated sections are thermally immature.


2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


1987 ◽  
Vol 51 (362) ◽  
pp. 553-559 ◽  
Author(s):  
E. Gökten ◽  
P. A. Floyd

AbstractThe volcanic rocks of the Şarkışla area in northeastern central Anatolia are associated with volcaniclastics, turbiditic limestones and pelagic-hemipelagic shales of Upper Cretaceous-Palaeocene age. A preliminary geochemical study was undertaken to constrain local tectonic models, and due to the variable altered nature of the volcanics, determine the lithological composition and magma type. Chemically the volcanics are an andesite-dominated suite of calc-alkali lavas, probably developed adjacent to an active continental margin in a local (ensialic back-arc?) basinal area. The volcanic activity was probably related to a postulated magmatic arc just south of the area during the early Tertiary.


1983 ◽  
Vol 47 (345) ◽  
pp. 473-479 ◽  
Author(s):  
D. K. Hallbauer ◽  
K. von Gehlen

AbstractEvidence obtained from morphological and extensive trace element studies, and from the examination of mineral and fluid inclusions in Witwatersrand pyrites, shows three major types of pyrite: (i) detrital pyrite (rounded pyrite crystals transported into the depositional environment); (ii) synsedimentary pyrite (round and rounded aggregates of fine-grained pyrite formed within the depositional environmen); and (iii) authigenic pyrite (newly crystallized and/or recrystallized pyrite formed after deposition). The detrital grains contain mineral inclusions such as biotite, feldspar, apatite, zircon, sphene, and various ore minerals, and fluid inclusions with daughter minerals. Most of the inclusions are incompatible with an origin by sulphidization. Recrystallized authigenic pyrite occurs in large quantities but only in horizons or localities which have been subjected to higher temperatures during the intrusion or extrusion of younger volcanic rocks. Important additional findings are the often substantial amounts of pyrite and small amounts of particles of gold found in Archaean granites (Hallbauer, 1982) as possible source rocks for the Witwatersrand detritus. Large differences in Ag and Hg content between homogeneous single gold grains within a hand specimen indicate a lack of metamorphic homogenization. The influence of metamorphism on the Witwatersrand pyrites can therefore be described as only slight and generally negligible.


2020 ◽  
Vol 57 (7) ◽  
pp. 840-854
Author(s):  
Richard A. Volkert

New geochemical and 40Ar/39Ar hornblende and biotite data from the Grenvillian Trenton Prong inlier provide the first constraints for the identification of lithotectonic units, their tectonic setting, and their metamorphic to post-metamorphic history. Gneissic tonalite, diorite, and gabbro compose the Colonial Lake Suite magmatic arc that developed along eastern Laurentia prior to 1.2 Ga. Spatially associated low- and high-TiO2 amphibolites were formed from island-arc basalt proximal to the arc front and mid-ocean ridge basalt-like basalt in a back-arc setting, respectively. Supracrustal paragneisses include meta-arkose derived from a continental sediment source of Laurentian affinity and metagraywacke and metapelite from an arc-like sediment source deposited in a back-arc basin, inboard of the Colonial Lake arc. The Assunpink Creek Granite was emplaced post-tectonically as small bodies of peraluminous syenogranite produced through partial melting of a subduction-modified felsic crustal source. Prograde mineral assemblages reached granulite- to amphibolite-facies metamorphic conditions during the Ottawan phase of the Grenvillian Orogeny. Hornblende 40Ar/39Ar ages of 935–923 Ma and a biotite age of 868 Ma record slow cooling in the northern part of the inlier following the metamorphic peak. Elsewhere in the inlier, biotite 40Ar/39Ar ages of 440 Ma and 377–341 Ma record partial to complete thermal resetting or new growth during the Taconian and Acadian orogens. The results of this study are consistent with the Trenton Prong being the down-dropped continuation of the Grenvillian New Jersey Highlands on the hanging wall of a major detachment fault. The Trenton Prong therefore correlates to other central and northern Appalachian Grenvillian inliers and to parts of the Grenville Province proper.


2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


1980 ◽  
Vol 20 (1) ◽  
pp. 209 ◽  
Author(s):  
G.M. Pitt ◽  
M.C. Benbow ◽  
Bridget C. Youngs

The Officer Basin of South and Western Australia, in its broadest definition, contains a sequence of Late Proterozoic to pre-Permian strata with an unknown number of stratigraphic breaks. Recent investigations by the South Australian Department of Mines and Energy (SADME), which included helicopter-based geological surveys and stratigraphic drilling, have upgraded the petroleum potential of the basin.SADME Byilkaoora-1, drilled in the northeastern Officer Basin in 1979, contained hydrocarbon shows in the form of oil exuding from partly sealed vugs and fractures in argillaceous carbonates. Equivalent carbonates were intersected in SADME Marla-1A and 1B. Previously, in 1976, SADME Murnaroo-1 encountered shales and carbonates with moderate organic carbon content overlying a thick potential reservoir sandstone, while SADME Wilkinson-1, drilled in 1978, contained a carbonate sequence with marginally mature to mature oil-prone source rocks. Acritarchs extracted from the last mentioned carbonates indicate an Early Cambrian age.All ?Cambrian carbonate sequences recognised to date in the Officer Basin of South Australia are correlated with the Observatory Hill Beds, which are now considered to be the major potential source of petroleum in the eastern Officer Basin.


Sign in / Sign up

Export Citation Format

Share Document