scholarly journals Auditor Choice Prediction Model Using Corporate Governance and Ownership Attributes: Machine Learning Approach

Author(s):  
Rahayu Abdul Rahman ◽  
◽  
Suraya Masrom ◽  
Nor Balkish Zakaria ◽  
Sunarti Halid

t-External auditor is one of the governance mechanisms in mitigating corporate managerial misconduct and thereby enhance the credibility of accounting information. Thus, the main objective of this study is to develop machine learning prediction model on auditor choice of the firm which signal the quality of auditing and financial reporting processes.This paper presents the fundamental knowledge on the design and implementation of machine learning model based on four selected algorithms tested on the real dataset of 2,262 firm-year observations of companies listed on Malaysian stock exchange from 2000 to 2007. The performance of each machine learning algorithm on the auditor choice dataset has been observed based on three groups of features selection namely firm characteristics, governance and ownership. The findings indicated that the machine learning models present better accuracy performance with ownership features selection mainly with the Naïve Bayes algorithm. Keywords-Auditor Choice, Machine Learning, Prediction, Malaysia

Author(s):  
Rahayu Abdul Rahman ◽  
◽  
Suraya Masrom ◽  
Nor Balkish Zakaria ◽  
Sunarti Halid

-External auditor is one of the governance mechanisms in mitigating corporate managerial misconduct and thereby enhance the credibility of accounting information. Thus, the main objective of this study is to develop machine learning prediction model on auditor choice of the firm which signal the quality of auditing and financial reporting processes.This paper presents the fundamental knowledge on the design and implementation of machine learning model based on four selected algorithms tested on the real dataset of 2,262 firm-year observations of companies listed on Malaysian stock exchange from 2000 to 2007. The performance of each machine learning algorithm on the auditor choice dataset has been observed based on three groups of features selection namely firm characteristics, governance and ownership. The findings indicated that the machine learning models present better accuracy performance with ownership features selection mainly with the Naïve Bayes algorithm. Keywords-Auditor Choice, Machine Learning, Prediction


Author(s):  
Dr. S. T. Patil

: In recent time’s stock market predictions is gaining more attention, maybe due to the fact that if the trend of the market is successfully predicted, the investors may be better guided. A stock exchange is a system where you can buy and sell stocks. By stock we mean the share in the ownership of the company. Companies buy stocks to get the money they need to grow. Whereas people buy the stocks, also called as securities as investment or ways of possibly earning money. A stock Market Prediction model will help people to predict particular company’s stock price before they want to invest. This system will help people to invest wisely.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 300
Author(s):  
Mark Lokanan ◽  
Susan Liu

Protecting financial consumers from investment fraud has been a recurring problem in Canada. The purpose of this paper is to predict the demographic characteristics of investors who are likely to be victims of investment fraud. Data for this paper came from the Investment Industry Regulatory Organization of Canada’s (IIROC) database between January of 2009 and December of 2019. In total, 4575 investors were coded as victims of investment fraud. The study employed a machine-learning algorithm to predict the probability of fraud victimization. The machine learning model deployed in this paper predicted the typical demographic profile of fraud victims as investors who classify as female, have poor financial knowledge, know the advisor from the past, and are retired. Investors who are characterized as having limited financial literacy but a long-time relationship with their advisor have reduced probabilities of being victimized. However, male investors with low or moderate-level investment knowledge were more likely to be preyed upon by their investment advisors. While not statistically significant, older adults, in general, are at greater risk of being victimized. The findings from this paper can be used by Canadian self-regulatory organizations and securities commissions to inform their investors’ protection mandates.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


2021 ◽  
Author(s):  
Aria Abubakar ◽  
Mandar Kulkarni ◽  
Anisha Kaul

Abstract In the process of deriving the reservoir petrophysical properties of a basin, identifying the pay capability of wells by interpreting various geological formations is key. Currently, this process is facilitated and preceded by well log correlation, which involves petrophysicists and geologists examining multiple raw log measurements for the well in question, indicating geological markers of formation changes and correlating them with those of neighboring wells. As it may seem, this activity of picking markers of a well is performed manually and the process of ‘examining’ may be highly subjective, thus, prone to inconsistencies. In our work, we propose to automate the well correlation workflow by using a Soft- Attention Convolutional Neural Network to predict well markers. The machine learning algorithm is supervised by examples of manual marker picks and their corresponding occurrence in logs such as gamma-ray, resistivity and density. Our experiments have shown that, specifically, the attention mechanism allows the Convolutional Neural Network to look at relevant features or patterns in the log measurements that suggest a change in formation, making the machine learning model highly precise.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohammad Nahid Hossain ◽  
Mohammad Helal Uddin ◽  
K. Thapa ◽  
Md Abdullah Al Zubaer ◽  
Md Shafiqul Islam ◽  
...  

Cognitive impairment has a significantly negative impact on global healthcare and the community. Holding a person’s cognition and mental retention among older adults is improbable with aging. Early detection of cognitive impairment will decline the most significant impact of extended disease to permanent mental damage. This paper aims to develop a machine learning model to detect and differentiate cognitive impairment categories like severe, moderate, mild, and normal by analyzing neurophysical and physical data. Keystroke and smartwatch have been used to extract individuals’ neurophysical and physical data, respectively. An advanced ensemble learning algorithm named Gradient Boosting Machine (GBM) is proposed to classify the cognitive severity level (absence, mild, moderate, and severe) based on the Standardised Mini-Mental State Examination (SMMSE) questionnaire scores. The statistical method “Pearson’s correlation” and the wrapper feature selection technique have been used to analyze and select the best features. Then, we have conducted our proposed algorithm GBM on those features. And the result has shown an accuracy of more than 94%. This paper has added a new dimension to the state-of-the-art to predict cognitive impairment by implementing neurophysical data and physical data together.


2017 ◽  
Author(s):  
Aymen A. Elfiky ◽  
Maximilian J. Pany ◽  
Ravi B. Parikh ◽  
Ziad Obermeyer

ABSTRACTBackgroundCancer patients who die soon after starting chemotherapy incur costs of treatment without benefits. Accurately predicting mortality risk from chemotherapy is important, but few patient data-driven tools exist. We sought to create and validate a machine learning model predicting mortality for patients starting new chemotherapy.MethodsWe obtained electronic health records for patients treated at a large cancer center (26,946 patients; 51,774 new regimens) over 2004-14, linked to Social Security data for date of death. The model was derived using 2004-11 data, and performance measured on non-overlapping 2012-14 data.Findings30-day mortality from chemotherapy start was 2.1%. Common cancers included breast (21.1%), colorectal (19.3%), and lung (18.0%). Model predictions were accurate for all patients (AUC 0.94). Predictions for patients starting palliative chemotherapy (46.6% of regimens), for whom prognosis is particularly important, remained highly accurate (AUC 0.92). To illustrate model discrimination, we ranked patients initiating palliative chemotherapy by model-predicted mortality risk, and calculated observed mortality by risk decile. 30-day mortality in the highest-risk decile was 22.6%; in the lowest-risk decile, no patients died. Predictions remained accurate across all primary cancers, stages, and chemotherapies—even for clinical trial regimens that first appeared in years after the model was trained (AUC 0.94). The model also performed well for prediction of 180-day mortality (AUC 0.87; mortality 74.8% in the highest risk decile vs. 0.2% in the lowest). Predictions were more accurate than data from randomized trials of individual chemotherapies, or SEER estimates.InterpretationA machine learning algorithm accurately predicted short-term mortality in patients starting chemotherapy using EHR data. Further research is necessary to determine generalizability and the feasibility of applying this algorithm in clinical settings.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2019 ◽  
Vol 34 (4) ◽  
pp. 221-229 ◽  
Author(s):  
Carlo M. Bertoncelli ◽  
Paola Altamura ◽  
Edgar Ramos Vieira ◽  
Domenico Bertoncelli ◽  
Susanne Thummler ◽  
...  

Background: Intellectual disability and impaired adaptive functioning are common in children with cerebral palsy, but there is a lack of studies assessing these issues in teenagers with cerebral palsy. Therefore, the aim of this study was to develop and test a predictive machine learning model to identify factors associated with intellectual disability in teenagers with cerebral palsy. Methods: This was a multicenter controlled cohort study of 91 teenagers with cerebral palsy (53 males, 38 females; mean age ± SD = 17 ± 1 y; range: 12-18 y). Data on etiology, diagnosis, spasticity, epilepsy, clinical history, communication abilities, behaviors, motor skills, eating, and drinking abilities were collected between 2005 and 2015. Intellectual disability was classified as “mild,” “moderate,” “severe,” or “profound” based on adaptive functioning, and according to the DSM-5 after 2013 and DSM-IV before 2013, the Wechsler Intelligence Scale for Children for patients up to ages 16 years, 11 months, and the Wechsler Adult Intelligence Scale for patients ages 17-18. Statistical analysis included Fisher’s exact test and multiple logistic regressions to identify factors associated with intellectual disability. A predictive machine learning model was developed to identify factors associated with having profound intellectual disability. The guidelines of the “Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis Statement” were followed. Results: Poor manual abilities ( P ≤ .001), gross motor function ( P ≤ .001), and type of epilepsy (intractable: P = .04; well controlled: P = .01) were significantly associated with profound intellectual disability. The average model accuracy, specificity, and sensitivity was 78%. Conclusion: Poor motor skills and epilepsy were associated with profound intellectual disability. The machine learning prediction model was able to adequately identify high likelihood of severe intellectual disability in teenagers with cerebral palsy.


Sign in / Sign up

Export Citation Format

Share Document