scholarly journals Effect of Water Regime on the Sucrose-Enzyme Relationships of Sugarcane Desiccated with Paraquat

1969 ◽  
Vol 56 (2) ◽  
pp. 134-153
Author(s):  
Rafael Montalvo-Zapata ◽  
Alex G. Alexander

Immature sugarcane was given variable-water regimes in sand culture and subsequently treated with a powerful desiccant, the bipyridylium herbicide Paraquat, applied as a 0.05-percent aqueous foliar spray. There were two objectives: (a) To evaluate the effects of water regime on sucroseenzyme relationships in desiccating sugarcane; and (b) to determine whether controlled water regimes could effectively modify Paraquat activity in sugarcane. Tissue samples were harvested for moisture, sugar and enzyme analyses at 1,3 and 9 days after Paraquat application. Low water supply (1 liter per day) reduced total fresh weights and stalk weights, and increased sucrose content of immature storage tissue. Paraquat significantly lowered total fresh weights, stalk weights, sheath moisture and leaf sucrose by the 9-day harvest. Desiccant action was generally more rapid within the low-water regime. High- and intermediate-water regimes tended to modify Paraquat activity at 1 or 3 days, but its ultimate effects were comparable regardless of water regime. No evidence was found to support the theory that desiccating cane accumulates water as a function of continued water absorption when transpiration has ceased. Acid invertase was suppressed by Paraquat, an effect consistent with earlier findings. The suppression was most severe in the low-water regime. Low-water supply significantly lowered invertase level but the response was not consistent at all harvests. Acid phosphatase and ATP-ase were severely repressed by Paraquat in leaves but not in immature storage tissue. An explanation was offered in terms of distinct chloroplast and mitochondrial enzymes rather than localized Paraquat action. For both enzymes the desiccant repression was significantly more severe in the high-water regime at 1 or 3 days, but water regime showed no effect at 9 days. Paraquat significantly increased ß-amylase in leaves (consistent with earlier studies), particularly within the high-water regime. In immature stem tissue ß-amylase was repressed by high water in Paraquat-free plants. Paraquat eliminated the water effect. Peroxidase was increased in storage tissue by Paraquat. This response was statistically significant only under conditions of low-water supply. It is concluded that variable water regimes can modify the rate of initial Paraquat activity in sugarcane; however, the ultimate effects of Paraquat will not be changed under conditions of thorough chemical application. Under field conditions of marginal chemical penetration, the plant's moisture status might play a more decisive role in determining the desiccant's effectiveness.

1969 ◽  
Vol 56 (2) ◽  
pp. 115-133
Author(s):  
Alex G. Alexander ◽  
George Samuels ◽  
Gene L. Spain ◽  
Rafael Montalvo-Zapata

Effects of water stress on growth, sugar production and enzymology of sugarcane were evaluated in two greenhouse experiments in which sugarcane of the variety P.R. 980 was grown in sand culture with controlled nutrient supply. At 14 weeks of age, four water regimes were created for each of the two experiments: No water, normal water (2 liters daily), normal water plus night flooding, and continuous flooding. One experiment was pretreated with a 0.01-percent solution of active gibberellic acid (GA) 10 days before water variables were initiated. Samples of leaf, leaf sheath, immature storage tissue and stalk tissue were harvested at 0, 2, 5, and 9 days. Enzyme assays were conducted with leaf and immature storage tissue preparations for acid invertase, adenosine triphosphatase (ATP-ase), and ß-amylase. The following results were obtained: 1. Foliar symptoms appeared between the fifth and ninth day among the low-water and continuous flooding regimes. Wilting of leaves and leaf sheaths, yellowing of leaf tips, extensive yellowing of older leaves and leaf sheaths, and severe curling of spindle tissues was general among both treatments. Symptoms were delayed but not prevented by GA pretreatment. Normal water and night flooding produced no visible effects. Whorls of adventitious roots grew from submerged nodes of continuously flooded plants. 2. Sheath moisture values ultimately declined in water-deficient and water-toxic plants regardless of GA treatment. Continuously flooded plants increased total fresh weight, regardless of leaf and sheath desiccation, when pretreated with GA. A GA role in promoting water uptake is suggested. 3. Leaf sucrose declined in water-deficient and continuously flooded sugarcane but increased in immature storage tissues. This was taken as evidence of continued sucrose transport under moisture conditions restrictive against sugar synthesis. Polarization values for milled juice indicated that GA pretreatment caused a decline of storage sucrose under a normal water regime, but GA prevented storage sucrose losses under a regime of continuous flooding. The former GA effect is interpreted in terms of growth stimulation, the latter in terms of GA involvement in sugar accumulation processes effective in transport of sucrose to storage areas. 4. Invertase was suppressed both by deficient and excessive water regimes and by GA pretreatment. Night flooding produced little effect. 5. ATP-ase was strongly suppressed by night flooding but no consistent effects were produced by the other water regimes. The ATP-ase suppression by excessive night water was interpreted as a perturbation of normal diurnal-nocturnal rhythms rather than a sensitivity of synthesis mechanisms to flooding per se. GA pretreatment suppressed ATP-ase among all water regimes. Assuming that foliar ATP-ase is a functional entity of photosynthetic phosphorylation, the GA effect was taken as further evidence of a GA influence upon sugarcane photosynthesis. 6. Foliar amylase remained at a constant level in water-deficient cane, while other water regimes tended to increase the enzyme. Amylase was less sensitive to water regime than invertase and appeared to be synthesized under flood conditions highly repressive for invertase. It is concluded that low- and high-water regimes tend to produce common effects upon the overall synthesis and utilization of sugar in the cane plant. Hormone level may affect the rate of sugar utilization within high and low water regimes without altering the outward manifestations of these regimes. Hydrolytic enzyme level is apparently affected indirectly by prolonged water stress or by perturbation of endogenous day-night rhythms. However, the enzymes measured were not sufficiently sensitive to changing water supply to serve as indicators of water status.


1996 ◽  
Vol 26 (3) ◽  
pp. 422-427 ◽  
Author(s):  
David G. Herr ◽  
Luc C. Duchesne

Soil monoliths were used to determine the effects of organic horizon removal, ash, water regime, and shading on red pine (Pinusresinosa Ait.) seedling emergence. Soil monoliths were collected from a jack pine (Pinusbanksiana Lamb.) stand and taken to the laboratory for prescribed burning, leading to 25%, 50%, 75%, and 100% organic horizon removal. One half of each monolith contained ash generated from burning, while the other half was kept ash-free. Each half of every monolith was sown with red pine seeds. The monoliths were then placed in a greenhouse and, in separate experiments, were exposed to different water regimes and shade regimes. Red pine seedling emergence was highest under high water regimes, increased shade regimes, and increased organic horizon removal. Seedling emergence was reduced by the presence of ash.


2011 ◽  
Vol 356-360 ◽  
pp. 2465-2472
Author(s):  
Fei Peng ◽  
Wataru Tsuji ◽  
Tao Wang ◽  
Atsushi Tsunekawa

Reaumuria songarica (Pall.) Maxim and Nitraria tangutorum Bobr. are two species growing on nebkhas in dune system. But N. tangutorum distributes more widely than R. songarica does. Sand burial and drought are two major disturbing factors in the field. Experiments were conducted under controlled conditions to investigate sand burial depth and simulated precipitation amount on seed germination, seedling emergence and seedling mass of the two shrubs to explain the dominance of N. tangutorum over R. songarica. Seeds were buried at 6 depths (0, 0.5, 1.5, 3, 5, 8 cm) and irrigated with 3 water regimes (5, 7, 10 mm) in plastic pots (8 cm in diameter and 11 cm in height) under the same light intensity and alternating temperature in an environment controlled growth chamber. R. songarica has a greater germination percentage than N. tangutorum under each burial depth with any water regime. R songarica seed germination increased with burial depth at each water regime and when depth is deeper than 1.5 cm all the seeds germinated under 7 and 10 mm water treatment. N. tangutorum seed germination increased until an optimal burial depth and then decreased. The optimal burial depth shifts with water regime. Seedling emergence of R songarica did not occur at depth deeper than 1.5 cm under any water regime. N. tangutorum seedling emergence maximized at 3, 1.5 and 0.5 cm with 5, 7 and 10 mm water supply regime respectively. Under all the treatments, N. tangutorum seedlings had larger dry mass than R. songarica seedlings. Higher N. tangutorum seedling emergence percentage and seedling mass with given water supply enhance its possibility to appear on nebkhas in the study area.


1969 ◽  
Vol 53 (3) ◽  
pp. 149-166
Author(s):  
Alex G. Alexander

Immature sugarcane was subjected to variable water and phosphorus (P) supply and then treated with foliar gibberellic acid (GA). All plants were grown in sand culture and received initial water and P treatments at 88 days of age. Water regimes of inadequate, adequate, and abundant supply were established with 1, 2, and 4 liters of water per day, respectively. Variable P included 0, 6, and 30 meq./liter. Foliar GA was given as 0-, 0.01-, and 0.10-percent solutions. There were three objectives: 1 To determine the effectiveness of GA as a growth stimulant and regulator of sugar-enzyme relationships under conditions of water and P stress; 2, to explore physiological limits within which GA-enzyme relationships persist; and 3, to explore the enzyme basis of water and P performance under extreme conditions of GA-stimulated growth. The following results were recorded: 1. Both water and GA had greatly increased stalk weight and intemode length 5 weeks after GA treatment. 2. Water supply strongly affected GA-growth responses. Water-deficient plants were proportionately more stimulated by GA than water-rich plants. However, maximum growth required both GA and abundant water. 3. GA appeared to increase the efficiency of water utilization, regardless of the amount of water supplied. 4. Variable water supply severely transformed the behavior patterns of ATP-ase, amylase, invertase and polyphenol oxidase. 5. GA treatment of low-water plants appeared to increase the severity of water shortage. Hydrolytic enzymes were severely retarded by GA when water supply was low, but not when adequate or abundant water was available. On the basis of growth and enzyme data it was proposed that GA caused an internal redeployment of water so that the net quantity available for enzymatic functions was reduced. It was also proposed that GA might decrease the internal water supply while increasing growth, in contrast to the commercial practice of externally withholding water which decreases growth. 6. Low P was inadequate for maximum growth, but severe P deficiency was not achieved. GA was proportionally more effective in promoting fresh weights and internode elongation when P supply was low. 7. GA moderately increased leaf P content when P supply was low. The increase was primarily organic P (PO) and this was attributed to GA suppression of phosphatase and ATP-ase. The significance of GA alteration of PO is discussed. 8. Evidence was found of a GA-induced PO decline mediated by increased amylase activity. 9. Leaf peroxidase was extremely sensitive to P supply, and to GA in P-hungry plants. The enzyme was excessively active in low-P X low-GA plants. 10. It is shown that cane growth and enzymology is far more sensitive to P than field experiments have indicated. The importance of PO, phosphatases and phosphorylase, as contrasted to total P content, is stressed.


Author(s):  
R. Comber

AbstractThe Oriental tobacco variety Izmir has been grown in sand culture in a greenhouse under various degrees of water stress. Plants given 400 cm


1999 ◽  
Vol 40 (3) ◽  
pp. 233-240 ◽  
Author(s):  
S. G. T. Giovannini ◽  
D. M. L. da Motta Marques

The behavior of three emergent aquatic macrophytes under different water regimes was studied with the aim of achieving reconvertion of degraded wetlands and wetland construction for water quality improvement. Scirpus californicus, Typha subulata and Zizaniopsis bonariensis establishment was evaluated under a split plot design, in a factorial experiment with three levels of a water regime factor over a subsoil substratum. The stagnant 10±2 cm water level was best suited to T. subulata and Z. bonariensis development and S. californicus developed better at oscillating water level (3±2 cm) with flooding at 48 hour intervals. The morphological response variables (thickness and width at half length of the tallest leaf or stem per plant, height of tallest leaf or stem per plant, number of green leaves or stems and number of shoots per plant, and survival of propagules' original leaves or stems) were satisfactory descriptors to differentiate (p<0.1%) growth of above ground parts as related to water regimes and species. The three species did survive satisfactory in subsoil-like substratum under the tested water regimes. Mortality was in the worse case, 17.2%, 36.7%, and 9.4% for S. californicus, T. subulata, and Z. bonariensis, respectively. Although Z. bonariensis growth was very poor, only S. californicus and T. subulata could be indicated for planting under similar limiting conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1511
Author(s):  
Jung-Ryel Choi ◽  
Il-Moon Chung ◽  
Se-Jin Jeung ◽  
Kyung-Su Choo ◽  
Cheong-Hyeon Oh ◽  
...  

Climate change significantly affects water supply availability due to changes in the magnitude and seasonality of runoff and severe drought events. In the case of Korea, despite high water supply ratio, more populations have continued to suffer from restricted regional water supplies. Though Korea enacted the Long-Term Comprehensive Water Resources Plan, a field survey revealed that the regional government organizations limitedly utilized their drought-related data. These limitations present a need for a system that provides a more intuitive drought review, enabling a more prompt response. Thus, this study presents a rating curve for the available number of water intake days per flow, and reviews and calibrates the Soil and Water Assessment Tool (SWAT) model mediators, and found that the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) from 2007 to 2011 were at 0.92, 0.84, and 7.2%, respectively, which were “very good” levels. The flow recession curve was proposed after calculating the daily long-term flow and extracted the flow recession trends during days without precipitation. In addition, the SWAT model’s flow data enables the quantitative evaluations of the number of available water intake days without precipitation because of the high hit rate when comparing the available number of water intake days with the limited water supply period near the study watershed. Thus, this study can improve drought response and water resource management plans.


2021 ◽  
pp. 71-75
Author(s):  
G. M. Mustafaev ◽  
A. A. Magomedova ◽  
S. M. Mursalov ◽  
A. Ch. Sapukova ◽  
M. M. Khalikov

Relevance. The water regime is one of the main processes in the life of the plant, optimizing which can increase the yield of cultivated crops. In protected ground conditions, the plants' water needs are met exclusively by irrigation. Irrigation is the most important means of increasing the yield of greenhouse crops, including tomato. Greenhouse tomatoes are very demanding on soil moisture, as well as on air humidity. To combat overheating of the air and plants, and to increase the relative humidity of the air in greenhouses, plants for evaporative cooling and humidification of plants are successfully used, which are especially effective in drip irrigation. The combination of drip irrigation with evaporative cooling makes it possible to control the water regime of the soil and air habitat of plants.Materials and Methods. The purpose of the research: to identify the most optimal method of water supply for greenhouse tomatoes. The research was conducted in 2018-2019 in the greenhouse complex "Yugagroholding", located in the suburbs of the city of Makhachkala. The object of research was a hybrid of tomato Mei shuai. The experiments included three options: sprinkling, drip irrigation, and drip irrigation with evaporative cooling.Results. The comparative characteristics of irrigation methods by yield are presented, the results of which indicate the advantage of the second and third options over sprinkling: the highest yield was obtained in the third option and amounted to 14.7 kg/m2 . The best methods of water supply that ensure the optimal water regime of greenhouse tomatoes are identified-drip irrigation and drip irrigation in combination with evaporative cooling, the latter is the best in most indicators. 


Sign in / Sign up

Export Citation Format

Share Document