scholarly journals Crop Response to Soil Acidity Factors in Ultisols and Oxisols in Puerto Rico. VIII. Yams

1969 ◽  
Vol 67 (4) ◽  
pp. 438-445
Author(s):  
Fernando Abruña ◽  
José Vicente-Chandler ◽  
José A. Rodríguez García

The effect of various soil acidity factors on yield and foliar composition of yams (Dioscorea alata L) were determined in two Ultisols and an Oxisol. The yam cultivar Smooth Statia responded strongly to variations in soil acidity in the two Ultisols. Yields decreased sharply as % Al saturation of the effective cation exchange capacity of the soil increased. Relative yields dropped to about 60% of maximum when Al saturation was only about 10%, and to 20% of maximum when Al saturation was 50%, a level common among Ultisols of Puerto Rico. The high sensitivity of this crop to soil acidity is shown by the fact that yields were sharply reduced when pH dropped from 5.6 to 5.1, a level at which most crops show little or no response to liming. Foliar composition was not affected by soil acidity, except that Ca content decreased with decreasing soil pH and increasing Al saturation. Yields of cultivar of the same species as Smooth Statia and known locally as Name de Palo were not affected by soil acidity levels in an Oxisol.

1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


1969 ◽  
Vol 69 (3) ◽  
pp. 377-382
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of soil acidity factors on yield components and leaf composition of plantains and bananas were studied on two Ultisols and one Oxisol. Both crops were extremely tolerant to soil acidity factors on all soils. On the Ultisols, plantains produced similar yields although pH varied from 4.1 to 6.0, and exchangeable Al contents from 0 to over 70% of the cation exchange capacity. On the Oxisol, similar yields were produced when pH varied from 4.25 to 5.25, and exchangeable Al contents from 0 to 48%. Soil acidity did not affect bunch weight or number or weight of fruits. Foliar composition was not affected except that Ca content decreased as acidity of the Ultisols increased. Similarly, bananas produced high yields of marketable fruit at all levels of soil acidity and none of the yield components were affected by the soil acidity factors. Foliar composition was not affected except that Ca content decreased with increasing acidity.


Author(s):  
Edmundo Rivera ◽  
Fernando Abruña ◽  
José Rodríguez

Cassava (Manihot esculenta Crantz), one of the major sources of carbohydrates throughout the tropics, was found to be very tolerant to high soil acidity in two Ultisols and one Oxisol. About 85% of maximum yields were obtained when Al saturation of the effective cation exchange capacity of the soil was around 60%, but highest yields were attained at about pH 5.3 with no exchangeable Al. Soil acidity factors did not affect the chemical composition of the cassava leaves, except for Mn, which increased with decreasing pH of the Oxisol. Tolerance of cassava to soil acidity was also confirmed by the fact that yields of 12 commercial varieties were not affected by Al saturation levels varying from 0 to 60% in an Ultisol.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016


2004 ◽  
Vol 18 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Gregory W. Kerr ◽  
Phillip W. Stahlman ◽  
J. Anita Dille

Effects of soil pH and cation exchange capacity (CEC) on sunflower tolerance to sulfentrazone were investigated in a greenhouse study. Variables were soil pH (7.0, 7.3, 7.5, and 7.8), soil CEC (8.2, 13.7, 18.4, and 23.3 cmol/kg), and sulfentrazone rate (0, 105, 158, and 184 g ai/ha). Sulfentrazone-induced leaf chlorosis was affected by soil pH at 12 d after planting (DAP), but plants recovered, and earlier differences were not visible 9 d later. At 12 DAP, leaf chlorosis was 3 or 4% more severe in soils with pH 7.3 or higher compared with soils with pH 7.0 when averaged over both sulfentrazone rate and soil CEC. Leaf chlorosis resulting from sulfentrazone rates of 105, 158, and 184 g/ha was 17, 25, and 35% less at 23 cmol/kg than at 8.2 cmol/kg, respectively. Differences in chlorosis among sulfentrazone rates were greatest in soil with low CEC and lessened as soil CEC increased. Plants regained normal color over time, and newly emerging leaves were not affected. However, plant dry weights were reduced when sulfentrazone rate was ≥158 g/ha. Averaged over sulfentrazone rate and soil pH, sunflower dry weights were less when soil CEC was 8.2 compared with a CEC of 13.7 cmol/kg or higher, indicating a greater response at low CEC. Sunflower plant dry matter was not different in sulfentrazone-treated soil with a CEC above 13.7 cmol/kg. At the ranges tested, soil CEC had a considerably greater effect than did pH on sunflower tolerance to sulfentrazone.


2019 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Nan Xu ◽  
Jehangir H. Bhadha ◽  
Abul Rabbany ◽  
Stewart Swanson

The addition of organic amendments and cover cropping on sandy soils are regenerative farming practices that can potentially enhance soil health. South Florida mineral soils present low soil quality due to their sandy texture and low organic matter (OM) content. Few studies have focused on evaluating the effects of farm-based management regenerative practices in this region. The objective of this study was to evaluate changes in soil properties associated with two regenerative farming practices - horse bedding application in combination with cover cropping (cowpea, Vigna unguiculata), compared to the practice of cover cropping only for two years. The soil quality indicators that were tested included soil pH, bulk density, water holding capacity, cation exchange capacity, OM, active carbon, soil protein and major nutrients (N, P, K). Results indicated no significant changes in soil pH, but a significant reduction in soil bulk density and a significant increase in maximum water holding capacity for both practices. Cation exchange capacity and the amounts of active carbon increased significantly after 1.5-year of the farming practices. Horse bedding application with cover cropping showed a significant 4% increase in OM during a short period. A significant increase in plant-available P was also observed under these two practices. Based on this study, horse bedding application as an organic amendment in conjunction with cover cropping provides an enhanced soil health effect compared to just cover cropping. As local growers explore farming option to improve soil health particularly during the fallow period using regenerative farming practices on sandy soils, these results will assist in their decision making.


1969 ◽  
Vol 68 (4) ◽  
pp. 413-422
Author(s):  
Fernando Abruña ◽  
Edmundo Rivera

Rice varieties IRS and Chontalpa 16 growing in two Ultisols with periodic overhead irrigation were quite tolerant to acidity producing around 80% of maximum yield at pH 4.8 and 30% Al saturation of the soils cation exchange capacity, a level common in Ultisols. However, maximum yields were obtained at pH 5.5 when no exchangeable Al was present in the soil. The Ca content of the leaves of both rice varieties decreased with decreasing pH and increasing Al saturation of the soils exchange capacity. Soil acidity factors in an Oxisol did not affect yields of the IRS variety, even at pH 4.5.


2011 ◽  
Vol 6 (3) ◽  
Author(s):  
J. Zake ◽  
J. Y. Z. Kitungulu ◽  
H. Busurwa ◽  
F. Kyewaze

Wetlands are not wastelands but wealth lands, which are widely distributed throughout Uganda currently covering 11% of the total land area. They are accessible to a large proportion of the population. As the country's population grows, people increasingly convert wetlands for other land uses such as farming, settlement among others thus making it difficult to enforce legislation for their protection, sustainable management and utilization. Their profound importance to both humans and wildlife calls for a concerted effort to ensure their sustainable utilization and attempts should be made to promote sustainable development of such wetlands with adequate considerations being given to human and environmental requirements. This study was therefore carried out to determine the effect of drainage on organic matter levels and on soil chemical changes in wetland soils in eastern Uganda around the Lake Victoria basin. Secondly, to assess potential lime requirements for drained wetland soils in eastern Uganda around the Lake Victoria basin, this would reflect on wetland soil buffering capacity. In green house studies it was found that drainage of wetland soils led to a reduction of organic matter relative to soil structure and where sulfur and iron were present in large amounts, drainage caused decrease in soil pH to moderately acidic levels; but in cases where exchangeable bases were present in large amounts there was an increase in soil pH. Lime requirements were greater where the amount of clay, organic matter and cation exchange capacity were high. Consequently, such wetland soils had a high buffering capacity. It was concluded that wetland soils should be characterized in terms of potential of acidification, level of organic matter, nutrient content, cation exchange capacity, soil texture and levels of trace elements. Decisions to drain or not to drain should depend on these parameters and other socio-economic considerations for the area.


Sign in / Sign up

Export Citation Format

Share Document