scholarly journals A survey of the pH status and related fertility factors of sugarcane fields of Puerto Rico

1969 ◽  
Vol 75 (3) ◽  
pp. 213-222 ◽  
Author(s):  
Antonio Vélez-Ramos ◽  
Miguel A. Muñoz

A field survey was initiated in the main sugarcane production areas of Puerto Rico to determine the pH status of sugarcane soils and those specific soil factors that influence growth and development, such as exchangeable cations, percentage base saturation (% BS) and lime requirement. Soil samples from Coloso, Plata, Arecibo, Humacao, Yabucoa and Eureka areas were analyzed for pH, available P, Fe and Mn; exchangeable K, Ca, Mg and Al; percentage base saturation and lime requirements. Soil pH ranged from as low as 3.2 to a high of 8.1. Sixty-eight percent of the soil samples analyzed showed pH values below 5.5. The lowest soil pH values were observed in the Eureka area and the highest in Arecibo, whereas in the Coloso, Plata, Humacao and Yabucoa areas pH values were intermediate with readings between 4 and 5 as an average. Eighty percent of the soil samples from Plata, 40.0% of those from Eureka and 40.5% of those from Coloso had pH values below 4.5. All soil samples collected in Humacao and Yabucoa (except one) showed pH values below 5.5. No definite trend was observed when sugarcane yield per acre and soil pH for the Yabucoa-Humacao area were compared. In general, P and K were low in all regions sampled, whereas Ca and Mg values were higher in the Coloso than in the Yabucoa-Humacao regions. Soils from the Coloso region showed higher levels of exchangeable Al and higher percentages of Al saturation than soils from the Yabucoa-Humacao region. This fact, together with a lower % BS should aggravate acidity problems in the Coloso region. Percentage base saturation was good at the higher pH readings.

1965 ◽  
Vol 45 (3) ◽  
pp. 311-322 ◽  
Author(s):  
J. S. Clark

A study was made of techniques for the measurement of soil pH and corrected lime potential and for the extraction of exchangeable cations from soils. The experiments showed that in order to obtain stable and reliable pH values and ion concentrations it was necessary to equilibrate the soil samples in CaCl2 (0.005 to 0.02 M) for 4 to 5 days. After the soil was washed twice with water, the exchangeable cations were extracted from the equilibrated samples by shaking for 16 to 24 hours with 100 ml 2 N NaCl for 0.5 to 2.5 meq of exchangeable cations. In order to obtain reliable values for exchangeable Al with the soils studied, it was necessary to use a colorimetric method instead of titration with NaOH. When these precautions were observed the relation between corrected lime potential and percent base saturation for a number of soils agreed within reasonable experimental error with the theoretical one obtained for Wyoming bentonite.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


2017 ◽  
Vol 38 (6) ◽  
pp. 3907 ◽  
Author(s):  
Wesley Machado ◽  
Thadeu Rodrigues de Melo ◽  
João Tavares Filho

The addition of limestone to the soil may cause clay dispersion and loss. In this study, we aimed to estimate clay dispersion and loss in Oxisol incubated with different concentrations of limestone. To this end, soil samples were collected from a depth of 0.0-0.20 m, treated with limestone at a concentration of 1.46 Mg ha-1 or 2.73 Mg ha-1 to raise base saturation to 60% and 70%, respectively, and incubated for 12 months under greenhouse conditions. Clay dispersion analysis was conducted monthly using the test tube method. The results showed that clay dispersion increased with soil pH and time after limestone application. However, no significant change in clay concentration was identified in the control (no limestone application). At 60% base saturation, clay loss was first observed to be significantly higher than that of the control at 4 months after application and reached a maximum at 9 months after application. At 70% base saturation, clay loss was also first observed to be significantly higher than that of the control at 4 months after application and reached a maximum at 6 months after application. Overall, our data revealed that clay dispersion due to limestone application was approximately 16 g kg-1 over a period of 12 months and increased with the increasing concentrations of Ca and Mg.


1969 ◽  
Vol 61 (1) ◽  
pp. 82-89
Author(s):  
Raúl Pérez-Escolar

The effects of soil pH and related acidity factors on the yields of sweetpotatoes, Miguela var., and soybeans, Jupiter var., were determined on typical Oxisols and Ultisols of Puerto Rico. The study revealed no significant effect of pH and acidity factors on the yield of the sweetpotato variety, which was quite tolerant to high soil acidity and exchangeable Al. Yields were similar to those obtained by other researchers who worked with other varieties. Soybeans, although relatively tolerant to high levels of exchangeable Al, were adversely affected when values surpassed 5.5 meq/100 g of soil in a clayey Ultisol. Exchangeable base content was directly related to soybean yield grown on a light textured Oxisol. Yields obtained are considered excellent. Highly significant correlations between soybean leaf N content and yield was found in the clayey Ultisol.


1969 ◽  
Vol 58 (1) ◽  
pp. 59-77
Author(s):  
Fernando Abruña ◽  
Raúl Pérez-Escolar ◽  
José Vicente-Chandler ◽  
Robert W. Pearson ◽  
Servando Silva

The effect of soil acidity factors was determined on yields and foliar composition of corn grown on Ultisols and Oxisols typical of the Humid Tropics. Soil pH values increased from about 3.8 with a base saturation of around 20 percent to about pH 5 with a base saturation of around 70 percent based on cation exchange capacities determined with neutral ammonium acetate. The low pH values in relation to exchangeable base contents are explained by the presence of free salts. The level of aluminum saturation of the soil based on exchange capacities as determined with ammonium acetate decreased from 40-percent at about pH 3.9 to 0 at about pH 5.2. The Ultisols had a high content of exchangeable aluminum when acid but the more weathered Oxisols contained little aluminum. A very close relationship exists between exchangeable base (Ca + Mg) and aluminum values based on total exchange capacities determined either with ammonium acetate at pH 7.0 or by the sum of cations at a given pH permitting conversion of one value to another. Corn responded strongly to liming particularly on the Ultisols which had high exchangeable aluminum content when acid. Calcium content of the corn leaves increased with soil base content and with yields but foliar composition was not otherwise affected by liming. Corn yields increased with pH to about 5.2 at which pH level these soils contained essentially no exchangeable aluminum, with exchangeable base content as determined with ammonium acetate to about the 70-percent saturation level, and with decreasing exchangeable aluminum in the soil to essentially 0. Soil pH, exchangeable base, and exchangeable aluminum content were effective criteria for liming these soils.


2000 ◽  
Vol 46 (8) ◽  
pp. 708-715 ◽  
Author(s):  
Shin-ichi Suzuki ◽  
Toru Okuda ◽  
Saburo Komatsubara

A simplified enrichment method for selective isolation of Actinobispora strains from soil is described. Actinobispora spores were tolerant to dry-heat treatment at 110°C for 15 min. Actinobispora was more resistant to 1 µg/mL leucomycin, 1 µg/mL novobiocin, and 0.5 µg/mL tunicamycin than Streptomyces dominant in soil, which prevents selective isolation of Actinobispora. Percentages of Actinobispora colonies on the isolation plate were increased by addition of antibiotics and dry-heat treatment of the soil samples. By combining the techniques described above, this genus was isolated from 105 out of 574 soil samples (18% of the samples tested). It was recovered from the soil samples with pH values ranging 5.0 to 8.9, and 78% of strains were isolated from neutral soil (pH 6.0-8.0). A number of Actinobispora strains were isolated from various soils around the world. Actinobispora strains are widely distributed in the world at relatively high frequency.Key words: Actinobispora, gellan gum, selective isolation, actinomycete, distribution.


1969 ◽  
Vol 68 (4) ◽  
pp. 433-443
Author(s):  
F. Abruña ◽  
E. Rivera ◽  
J. A. Rodríguez-García

The effect of various soil acidity factors on yield and leaf composition of pigeon peas [Cajanus cajan (L.) Huth] was determined in two Ultisols and one Oxisol. Pigeon peas barely responded in yield to soil acidity levels in the Oxisol, but responded strongly to variations in soil acidity in the two Ultisols. Yields increased from almost zero at the highest level of acidity (about pH 4 and 80% Al saturation) to more than 8 t/ha at about pH 6.0 with no exchangeable Al present. Yields increased with increasing soil pH, decreasing exchangeable Al content, and increasing exchangeable Al:Ca ratio. Yields were highest when pH was about 6.0, exchangeable Al was less than 20%, and exchangeable Al:Ca was less than 1.0. Soil acidity did not affect leaf composition, except that Ca content decreased with increasing acidity and correlated well with yields, ranging from about 0.5% with lowest yields to more than 1% with the highest yields. Number of nodules per plant was not affected by acidity factors, except at the highest level of acidity, at which no nodules were found.


1969 ◽  
Vol 46 (2) ◽  
pp. 107-119
Author(s):  
George Samuels

The pH values of the soils of Puerto Rico were determined with the following results: 1. About 80 percent of the soils were acid (below pH 7) and 50 percent were below pH 6, which was acid enough to require liming. 2. Most of the soils planted to bananas were pH 6 and above. 3. The pH range for brushland was wide, extending from acid to alkaline. 4. Eighty percent of the soils of the coconut plantations were above pH 6. 5. Coffee soils, in general, were acid, with 63 percent below pH 6, of which 49 percent were in the range pH 5.0 to 5.9 and 13 percent in the very acid range of pH 4.0 to 4.9. 6. The pH of soils planted to corn varied widely. 7. The small cotton acreage had a pH range of 5.0 to 5.9. 8. The soils planted to grapefruit had 57 percent of their acreage at pH 4.0 to 4.9 and 29 percent in the range pH 5.0 to 5.9. 9. The natural pastures had 75 percent of their soil at pH below 6, whereas improved and rotational pastures had only 39 percent below pH 6. 10. Pineapples were planted in acid soils, 75 percent of which were below pH 6. 11. The majority, 68 percent, of the plantains were grown in acid soils below pH 6. 12. Root-crop soils had a systematic distribution throughout the range of pH from below 4 to above 8. 13. Most soils used for soilage (cut grass) had a pH above 6. 14. Eighty-one percent of the sugarcane acreage was found to be in the range of pH 5 to 8. About 36 percent of the cane acreage was below pH 5.5 and in need of liming. 15. Tobacco was grown primarily on acid soils, with 61 percent of its acreage on those below pH 6. 16. No vegetables were found in soils with a pH below 5, and 50 percent were planted in soils with a pH above 6. 17. The pH range for woodland soil was distributed rather evenly from a pH 5 to 7.9. 18. The average pH and range of pH of the soils of Puerto Rico are presented, by soil series, and several examples are given of the relationship between soil pH and soil series.


2001 ◽  
Vol 44 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Mário Miyazawa ◽  
Marcos A. Pavan ◽  
Cláudio O. Ziglio ◽  
Júlio C. Franchini

A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.


1969 ◽  
Vol 52 (2) ◽  
pp. 85-100
Author(s):  
Fernando Abruña Rodríguez ◽  
Juan Juárez ◽  
Raúl Pérez Escolar ◽  
José Vicente Chandler

Variable liming and heavy fertilization of a Cialitos clay (ultisol) over a 7-year period markedly affected soil properties and yields of subsequently planted sugarcane. A total of 3,680 pounds of N, 480 pounds of P, and 2,870 pounds of K had been applied per acre to all plots over this period. Cane yields increased from less than 1 ton per acre, when no lime had been applied, to over 40 tons when a total of 20 tons of limestone had been applied per acre over the previous 7-year period. Yields increased with increasing exchangeable base content in the upper 6 inches of soil from less than 10 tons per acre when exchangeable bases dropped below 3 meq., to over 40 tons when exchangeable bases exceeded 8 meq./l00 g. of soil (58-percent base saturation). Cane yields increased with decreasing exchangeable Al from less than 10 tons, when exchangeable Al exceeded 8 meq., to over 40 when exchange able Al was less than 2 meq./100 g. of soil. Yields increased with increasing soil pH, but the presence of free salts in this heavily fertilized soil made pH an unreliable criterion for determining the need for liming. Applying 8 tons of limestone per acre to the surface of a very acid Cialitos clay before planting increased cane yields from an average of 12.4 to 34.5 tons per acre, and decreased exchangeable Al from 7.3 to 0.5 meq. per 100 g. of soil. The foliar composition at 9 months of age, and the sucrose content of the sugarcane were not affected by the soil factors studied, or by lime applications, and remained unchanged, at satisfactory levels, in plots yielding from almost 0 to over 40 tons of cane per acre. A survey showed that in many sugarcane soils of the Humid Region exchangeable aluminum exceeded levels that depressed cane yields on Cialitos clay in this experiment.


Sign in / Sign up

Export Citation Format

Share Document