scholarly journals PAPR Reduction of OFDM System with Biorthoganoal Wavelet Transforms

Author(s):  
Palle Jagadeeswara Rao and Dr. A S Srinivasa Rao

Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input and Multiple Output (MIMO) are two main techniques employed in 4th Generation Long Term Evolution (LTE). In OFDM multiple carriers are used and it provides higher level of spectral efficiency as compared to Frequency Division Multiplexing (FDM). In OFDM because of loss of orthogonality between the subcarriers there is intercarrier interference (ICI) and intersymbol interference (ISI) and to overcome this problem use of cyclic prefixing (CP) is required, which uses 20% of available bandwidth. Wavelet based OFDM provides good orthogonality and with its use Bit Error Rate (BER) is improved. Wavelet based system does not require cyclic prefix, so spectrum efficiency is increased. It is proposed to use wavelet transform including biorthoganoal wavelet transform with OFDM systems. This approach will reduce PAPR in the OFDM system effectively. We will design this model with different modulation Techniques like QPSK and QAM and compare the BER results.


Author(s):  
Mayada Faris Ghanim

Wavelet transform has many advantages that make it suitable and efficient approach to replace Fast Fourier Transform (FFT) in conventional Orthogonal Frequency Division Multiplexing (OFDM) systems. Wavelet transform is employed in modern cellular networks to remove the use of cyclic prefix, which leads to decreasing the bandwidth losses and the power of transmission. Wavelet based OFDM system is designed in order to overcome the drawbacks of OFDM system so that the proposed system is good candidate for next generation wireless communications.



2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Shilpi Gupta ◽  
Upena Dalal ◽  
Vishnu Narayan Mishra

In orthogonal frequency division multiplexing (OFDM) system, the existence of frequency offset in AWGN channel affects the orthogonality among the subcarriers and consequently introduces the intercarrier interference (ICI). The paper investigates new ICI self-cancellation technique to mitigate the effect of ICI in FFT-OFDM and compares it to DCT based OFDM system in terms of bit error rate (BER) and carrier to interference ratio (CIR). The proposed method for group size three results in a significant 20 dB improved CIR in FFT-OFDM. In terms of BER, proposed ICI self-cancellation technique outperforms the other self-cancellation techniques in FFT-OFDM. Also, this paper investigates outperforming BER and CIR improvement by using DCT-OFDM without applying self-cancellation techniques, due to its energy compaction property.



2014 ◽  
Vol 548-549 ◽  
pp. 1221-1226
Author(s):  
Zeng You Sun ◽  
Fan Ming Zeng

In order to reduce the Orthogonal Frequency division Multiplexing (OFDM) Inter-Carrier Interference (ICI), Put forward a kind of modulation method that based on the orthogonal frequency division multiplexing of orthogonal wavelet, Using orthogonal wavelet instead of discrete Fourier transform, optimize the design for OFDM systems, on the premise of without protection interval to reduce the system interference, using MATLAB to simulate the OFDM system, results show that the optimization of the OFDM can reduce the power of the ICI and Inter-symbol Interference (ISI) and improve the comprehensive anti-jamming of the OFDM system.



2013 ◽  
Vol 321-324 ◽  
pp. 2837-2840
Author(s):  
Xi Jun Zhang ◽  
Jian Bin Xue ◽  
Ying Lin ◽  
Ji Ai He

Orthogonal frequency division multiplexing (OFDM) is a kind of highly transmission technology. It has been taken more and more attention in many ways. In this paper it mainly discussed the simulation process and several interpolation algorithms in OFDM system. Using computer we simulate the interpolation algorithms in OFDM channel estimation. Through the simulation results we compare the advantage and disadvantage of the interpolation algorithms. At last we can use the conclusion to choose the correct interpolation algorithms in OFDM channel estimation.



Author(s):  
M. F. Ghanim

<p>Nowadays, emerging wireless networks scenarios such as the proposed systems for 5G is discussed widely with diverse requirements. Orthogonal Frequency Division Multiplexing (OFDM) is a conservative proposal which is used to build 5G WOFDM system (Wavelet OFDM system). The simulation of the system is initialized with BPSK then with QAM and 64-QAM the system is improved by increasing the number of levels of Discrete Wavelet Transform to five levels and finally compared with original system to prove that the it is convenient for 5G Wireless networks.</p>



2018 ◽  
Vol 189 ◽  
pp. 04016
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Yong-Hwa Kim

Orthogonal frequency division multiplexing (OFDM) is widely used in wired or wireless transmission systems. In the structure of OFDM, a cycle prefix (CP) has been exploited to avoid the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI). This paper proposes a new approach to transmit the signals without CP transmission. Using the deep neural network, the proposed OFDM system transmits data without the CP. Simulation results show that the proposed scheme can estimate the CP at the receiver and overcome the effect of ISI.



Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.



Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>



Sign in / Sign up

Export Citation Format

Share Document