scholarly journals A PROPELLER BLADE MANUFACTURING BY HYBRID ADDITIVE MANUFACTURING SYSTEM

Author(s):  
Ömer EYERCİOĞLU ◽  
Mehmet ALADAĞ
2019 ◽  
Vol 109 (03) ◽  
pp. 179-183
Author(s):  
J. Fischer ◽  
P. Springer ◽  
S. Fulga-Beising ◽  
K. Abu El-Qomsan

Das Fraunhofer IPA forscht an Workflows und Methoden für die Herstellung personalisierter Produkte von der Erfassung persönlicher Daten über die Analyse und Modellierung bis hin zur flexiblen, automatisierten Fertigung der Produkte. Der Beitrag beschreibt einen beispielhaften Anwendungsfall: die Herstellung einer personalisierten Brille. Für die nötige Flexibilität in der Fertigung wurde ein vollständig automatisiertes additives Fertigungssystem entwickelt, das im Applikationszentrum Industrie 4.0 des Fraunhofer IPA und des Instituts für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart integriert ist.   Fraunhofer IPA examines workflows and methods for the production of personalized products from the acquisition of personal data, analysis and modelling to the flexible, automated production of the products. This paper exemplifies an application using the production of personalized glasses. For this purpose, a fully automated additive manufacturing system was developed to provide the necessary flexibility in manufacturing.


2016 ◽  
Vol 55 (36) ◽  
pp. 9676-9686 ◽  
Author(s):  
Elçin Içten ◽  
Girish Joglekar ◽  
Chelsey Wallace ◽  
Kristen Loehr ◽  
Jennifer Sacksteder ◽  
...  

2016 ◽  
Vol 73 ◽  
pp. 66-75 ◽  
Author(s):  
Donghong Ding ◽  
Chen Shen ◽  
Zengxi Pan ◽  
Dominic Cuiuri ◽  
Huijun Li ◽  
...  

2018 ◽  
Vol 38 (12) ◽  
pp. 2313-2343 ◽  
Author(s):  
Daniel R. Eyers ◽  
Andrew T. Potter ◽  
Jonathan Gosling ◽  
Mohamed M. Naim

Purpose Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice. Design/methodology/approach This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand. Findings The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems. Originality/value Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems.


2021 ◽  
Vol 27 (3) ◽  
pp. 636-642
Author(s):  
Qin Qin ◽  
Jigang Huang ◽  
Jin Yao ◽  
Wenxiang Gao

Purpose Scanning projection-based stereolithography (SPSL) is a powerful technology for additive manufacturing with high resolution as well as large building area. However, the surface quality of stitching boundary in an SPSL system has been rarely studied, and no positive settlement was proposed to address the poor stitching quality. This paper aims to propose an approach of multi-pass scanning and a compensation algorithm for multi-pass scanning process to address the issue of poor stitching quality in SPSL systems. Design/methodology/approach The process of multi-pass scanning is realized by scanning regions repeatedly, and the regions can be cured simultaneously because of the very short repeat exposure time and very fast scanning. Then, the poor stitching quality caused by the non-simultaneous curing can be eliminated. Also, a compensation algorithm is designed for multi-pass scanning to reduce the stitching errors. The validity of multi-pass scanning is verified by curing depth test, while the performance of multi-pass scanning as well as proposed compensation algorithm is demonstrated by comparing with that of a previous SPSL system. Findings The results lead to a conclusion that multi-pass scanning with its compensation algorithm is an effective approach to improve the stitching quality of an SPSL system. Practical implications This study can provide advice for researchers to achieve the satisfactory surface finish with SPSL technology. Originality/value The authors proposed a process of multi-pass scanning as well as a compensation algorithm for SPSL additive manufacturing (system to improve the stitching quality, which has rarely been studied in previous work.


Procedia CIRP ◽  
2020 ◽  
Vol 93 ◽  
pp. 32-37 ◽  
Author(s):  
Mandaná Moshiri ◽  
Amal Charles ◽  
Ahmed Elkaseer ◽  
Steffen Scholz ◽  
Sankhya Mohanty ◽  
...  

Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 29
Author(s):  
Kai-Wei Chen ◽  
Ming-Jong Tsai ◽  
Heng-Sheng Lee

This paper developed a multi-nozzle pneumatic extrusion-based additive manufacturing (AM) system and applied it to print multi-material polymers and conductive sensing pads. We used pneumatic extrusion nozzles to extrude the liquid material and then cured it by an ultraviolet (UV) light source. The multi-nozzle pneumatic extrusion-based additive manufacturing system mainly integrates both PC-based HMI and CNC controller to operate the three-axis motion and the extrusion flow control. Moreover, the peripheral I/Os include both positive and negative pressure and also the curing light source. A D/A controller is also applied to control the value of the pneumatic pressure. The coding part utilizes the numerical control software along with the PLC planning to operate the AM machine automatically. Our experiment is conducted by using Simplify3D, a commercial 3D printing slicing software. Different requirements were set for extrusion nozzles with different materials, and then we executed the path controlling G-code data by Python Language. Our system successfully prints multi-material polymer structure pads which include the hard and soft material pad fabricated in double-layers, triple-layers and also the grid structure. Finally, we find that the printed pad has conductivity.


2019 ◽  
Vol 04 (04) ◽  
pp. 1930001 ◽  
Author(s):  
Abid Haleem ◽  
Mohd Javaid

Additive manufacturing (AM) is a set of technologies and are vital to fulfilling different requirements of Industry 4.0. So, there is a need to study different additive manufacturing applications toward its achievement. From the Scopus database, different research articles on “Industry 4.0” and “additive manufacturing applications in Industry 4.0” are identified and studied through a bibliometric analysis. It shows that there is an increasing trend of publications in this new area. Industry 4.0 has entered new markets which focus on customer delight by adding values in product and services. It supports automation, interoperability, actionable insights and information transparency. There are different components vital to implement Industry 4.0 requirements. Through this extensive literature review based work, we identified different components of Industry 4.0 and explained the critical ones briefly. Finally, 13 important AM applications in Industry 4.0 are identified. The main limitation of the AM manufactured part is of comparable low strength and associated quality, coupled with a high cost of the printing machine system. In this upcoming industrial revolution, AM is a crucial technology which has become the main component of product innovation and development. This disruptive technology can fulfil different challenges in the future manufacturing system and help the industry to produce innovative products. For this futuristic manufacturing system, additive manufacturing is an upcoming paradigm, and Industry 4.0 will use its potential to achieve required goals.


Sign in / Sign up

Export Citation Format

Share Document