scholarly journals IoT Enabled Cluster Based Energy Aware Routing Protocol In WSN

2021 ◽  
pp. 93-102
Author(s):  
Steffi R

Because of the unpredictable nature of sensor nodes, propagating sensory data raises significant research challenges in Wireless Sensor Networks (WSNs). Recently, different cluster-based solutions are designed to improve network stability and lifetime. However, most energy-efficient solutions are developed for homogeneous networks and uses only a distance parameter for data communication. Although, some existing solutions are attempted to improve the selection of next-hop based energy factor. Nevertheless, such solutions are unstable and lack reduce data delivery interruption in overloaded links. Our proposed solution aims to develop Reliable Cluster-based Energy-aware Routing (RCER) protocol for heterogeneous WSN which lengthens network lifetime and decreases routing cost. Our proposed RCER protocol makes use of heterogeneity nodes concerning their energy and comprises of two main phases; firstly, the network field is parted in geographical clusters to make the network more energy-efficient and secondly; RCER attempts optimum routing for improving the next-hop selection by considering residual-energy, hop-count and weighted value of Round-Trip Time (RTT) factors. Moreover, RCER restores routing paths and provides network reliability with improved data delivery performance. Simulation results demonstrate significant development of RCER protocol against their competing solutions.

2013 ◽  
Vol 303-306 ◽  
pp. 191-196
Author(s):  
Wei Zhang ◽  
Ling Hua Zhang

Energy aware routing is a critical issue in WSN. Prior work in energy aware routing concerned about transmission energy consumption and residual energy, but often do not consider path hop length, which leads to unnecessary consumption of power at sensor nodes. Improved algorithm adds the control of routing hops. Simulation proof the improved algorithm is feasible, effectively reducing the network delay and the path of energy consumption. Taking into account the WSN is dynamic, in the end we put up dynamic hops control in order to adapt to WSN and select the optimal path.


2013 ◽  
Vol 475-476 ◽  
pp. 936-944
Author(s):  
Xun Wang ◽  
Ling Hua Zhang

GEAR is an important geographic and energy aware routing protocol in wireless sensor network. As the GEAR is short of enough topology knowledge and the nodes energy is limited, routing void and routing loop will be arisen. This paper presents a smart energy aware routing protocol based on the geographic (SGEAR), which is suitable for the specific scenarios of small network. In the specific scenarios of small network, there are three major nodes to concentrate on, (1) the selected (2) the void (3) the residual energy is less than threshold. The SGEAR modifies the cost functions based on the residual energy, escaping the routing loop caused by the broadcast delay. From the simulations, the conclusions can be drawn that the smaller hop count doesnt indicate the less energy consumption, and SGEAR can reduce the void number, reducing the energy consumption of the entire network, which further prolongs the life of the network to satisfy the need of the specific scenarios of small network.


Author(s):  
Selvakumar Kamalanathan ◽  
Sai Ramesh Lakshmanan ◽  
Kannan Arputharaj

In many applications such as disaster management, temperature control, weather forecasting, industrial control system and forest fire detection, it is very difficult for a human to monitor and control each and every event in real time. Even with advancement in technology, this issue has remained a challenging task. The existing Wireless Network may not be suitable for data communication with human network. Hence, to monitor and control the physical parameters of the environment, a special device with needed functionalities is required. The network which is formed with these devices is known as sensor network. This is used to monitor, control and send the collected information to the end user. These networks are formed with a large number of sensor nodes with limitation such as self-energized, low computation power, infra-structure less, multi-hop communication and without central administrator control. Due to the ad hoc nature, the nodes are deployed unevenly over a geographical region, it is necessary to provide some mechanism to manage and control the topology of the sensor nodes to prolong their life time. Clustering algorithms are useful for data mining, compression, probability density estimation and many other important tasks like IDS. Clustering algorithm utilize a distance metric in order to partition network traffic patterns so that patterns within a single group have same network characteristics than in a different group. The proposed system builds a Fuzzy logic clustering model that can perform three different types of clusters in order to achieve the secure and energy aware routing of packets.


2019 ◽  
Vol 8 (4) ◽  
pp. 5906-5909

Wireless Sensor Network (WSN) is composed of several low powered, tiny and cheap sensors deployed over a geographical area to monitor the environment. WSN can be set out in various real time applications like security and surveillance, healthcare monitoring, smart grids, smart buildings, environmental monitoring and industrial applications etc. A WSN includes numerous spatially dispersed sensor nodes or motes that sense the environment, transfer them to a computing device through hoping and processes them to result in useful information. Since motes are low-powered and operate on limited energy resource, prolong usage of same nodes to transfer data may lead to network failure. Clustering provides an efficient technique to increase the longevity of network by efficiently using the residual energy in the motes. We propose a reasonable energy aware routing protocol that implements energy efficient cluster formation through Energy efficient Custer Head Election (ECHA) algorithm that increases the network performance to a greater extent.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


2020 ◽  
Vol 17 (12) ◽  
pp. 5447-5456
Author(s):  
R. M. Alamelu ◽  
K. Prabu

Wireless sensor network (WSN) becomes popular due to its applicability in distinct application areas like healthcare, military, search and rescue operations, etc. In WSN, the sensor nodes undergo deployment in massive number which operates autonomously in harsh environment. Because of limited resources and battery operated sensor nodes, energy efficiency is considered as a main design issue. To achieve, clustering is one of the effective technique which organizes the set of nodes into clusters and cluster head (CH) selection takes place. This paper presents a new Quasi Oppositional Glowworm Swarm Optimization (QOGSO) algorithm for energy efficient clustering in WSN. The proposed QOGSO algorithm is intended to elect the CHs among the sensor nodes using a set of parameters namely residual energy, communication cost, link quality, node degree and node marginality. The QOGSO algorithm incorporates quasi oppositional based learning (QOBL) concept to improvise the convergence rate of GSO technique. The QOGSO algorithm effectively selects the CHs and organizes clusters for minimized energy dissipation and maximum network lifetime. The performance of the QOGSO algorithm has been evaluated and the results are assessed interms of distinct evaluation parameters.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aparna Ashok Kamble ◽  
Balaji Madhavrao Patil

Abstract Wireless networks involve spatially extended independent sensor nodes, and it is associated with each other’s to preserve and identify physical and environmental conditions of the particular application. The sensor nodes batteries are equipped with restricted energy for working with an energy source. Consequently, efficient energy consumption is themain important challenge in wireless networks, and it is outfitted witharestricted power storage capacity battery. Therefore, routing protocol with energy efficiency is essential in wireless sensor network (WSN) to offer data transmission and connectivity with less energy consumption. As a result, the routing scheme is the main factor for decreasing energy consumption and the network's lifetime. The energy-aware routing model is mainly devised for WSN with high network performance when transmitting data to a sink node. Hence, in this paper, the effectiveness of energy-aware routing protocols in mobile sink-based WSNs is analyzed and justified. Some energy-aware routing systems in mobile sink-based WSN techniques, such as optimizing low-energy adaptive clustering hierarchy (LEACH) clustering approach, hybrid model using fuzzy logic, and mobile sink. The fuzzy TOPSIS-based cluster head selection (CHS) technique, mobile sink-based energy-efficient CHS model, and hybrid Harris Hawk-Salp Swarm (HH-SS) optimization approach are taken for the simulation process. Additionally, the analytical study is executed using various conditions, like simulation, cluster size, nodes, mobile sink speed, and rounds. Moreover, the performance of existing methods is evaluated using various parameters, namely alive node, residual energy, delay, and packet delivery ratio (PDR).


Wireless Sensor Networks (WSN) is a group of sensor devices, which are used to sense the surroundings. The network performance is still an issue in the WSN and an efficient protocol is introduced such as LEACH. To improve the stability, LEACH with fuzzy descriptors is used in preceding research. However the existing has drawback with effective group formation in heterogeneous WSN and also it is not achieved the Super Leader Node (SLH). To overcome the above mentioned issues, the proposed system enhances the approach which is used for increasing the energy consumption, packet delivery ratio, and bandwidth and network lifetime. The proposed paper contains three phases such as grouping formation, Leader Node (LN) selection, SLN selection with three main objectives:(i) to acquire Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN for grouping formation (ii)To design Low Energy Adaptive Clustering Hierarchy- Expected Residual Energy (LEACH-ERE) protocol for LN selection.(iii)To optimize the SCH selection by Particle Swarm Optimization (PSO) based fuzzy approach. The clustering formation is done by Energy-Efficient Prediction Clustering Algorithm (EEPCA) in heterogeneous WSN. It is used to calculate the sensor nodes which have shortest distance between each node. The LEACH-ERE protocol was proposed to form a Leader Node (LN) and all the nodes has to communicate with sink through LN only. New SLN is elected based on distance from the sink and battery power of the node.


2021 ◽  
Vol 13 (4) ◽  
pp. 24-36
Author(s):  
Srinivasan Palanisamy ◽  
Sankar S. ◽  
Ramasubbareddy Somula ◽  
Ganesh Gopal Deverajan

Wireless sensor networks (WSN) deployed in open environments make nodes prone to various security attacks due to their resource constrained nature. The compromised nodes are used to mislead the sensed data and disrupt communication, which can affect the entire decision-making system based on the sensed data. It is also possible to drain the sensor nodes energy and reduce the battery life of the networks. Trust models are the preferred mechanism to secure WSN. In this paper, the authors present communication trust and energy aware (CTEA) routing protocol that make use of the proposed trust model to mitigate the effects of badmouth and energy drain attacks. They use Dempster theory to compute communication trust and also consider the energy metric, to establish the route for data transfer. The simulation result shows that the proposed trust model increases the packet delivery ratio, residual energy, and network lifetime by mitigating the nodes misbehaviour in presence of energy drain and bad mouth attacks.


2020 ◽  
Vol 10 (5) ◽  
pp. 1885 ◽  
Author(s):  
Liangrui Tang ◽  
Zhilin Lu ◽  
Bing Fan

In energy-constrained wireless sensor networks, low energy utilization and unbalanced energy distribution are seriously affecting the operation of the network. Therefore, efficient and reasonable routing algorithms are needed to achieve higher Quality of Service (QoS). For the Dempster–Shafer (DS) evidence theory, it can fuse multiple attributes of sensor nodes with reasonable theoretical deduction and has low demand for prior knowledge. Based on the above, we propose an energy efficient and reliable routing algorithm based on DS evidence theory (DS-EERA). First, DS-EERA establishes three attribute indexes as the evidence under considering the neighboring nodes’ residual energy, traffic, the closeness of its path to the shortest path, etc. Then we adopt the entropy weight method to objectively determine the weight of three indexes. After establishing the basic probability assignment (BPA) function, the fusion rule of DS evidence theory is applied to fuse the BPA function of each index value to select the next hop. Finally, each node in the network transmits data through this routing strategy. Theoretical analysis and simulation results show that DS-EERA is promising, which can effectively prolong the network lifetime. Meanwhile, it can also reach a lower packet loss rate and improve the reliability of data transmission.


Sign in / Sign up

Export Citation Format

Share Document