scholarly journals An Instruction Set Extension to Support Software-Based Masking

Author(s):  
Si Gao ◽  
Johann Großschädl ◽  
Ben Marshall ◽  
Dan Page ◽  
Thinh Pham ◽  
...  

In both hardware and software, masking can represent an effective means of hardening an implementation against side-channel attack vectors such as Differential Power Analysis (DPA). Focusing on software, however, the use of masking can present various challenges: specifically, it often 1) requires significant effort to translate any theoretical security properties into practice, and, even then, 2) imposes a significant overhead in terms of efficiency. To address both challenges, this paper explores the use of an Instruction Set Extension (ISE) to support masking in software-based implementations of a range of (symmetric) cryptographic kernels including AES: we design, implement, and evaluate such an ISE, using RISC-V as the base ISA. Our ISE-supported first-order masked implementation of AES, for example, is an order of magnitude more efficient than a software-only alternative with respect to both execution latency and memory footprint; this renders it comparable to an unmasked implementation using the same metrics, but also first-order secure.

2012 ◽  
Vol 2 (1) ◽  
pp. 1-18 ◽  
Author(s):  
P. Grabher ◽  
J. Großschädl ◽  
S. Hoerder ◽  
K. Järvinen ◽  
D. Page ◽  
...  

1967 ◽  
Vol 22 (6) ◽  
pp. 945-954 ◽  
Author(s):  
Chr. Klixbüll Jørgensen ◽  
W. Preetz

The previous M.O. treatment of unsubstituted hexahalides has been modified, taking the results on Faraday effect obtained at the University of Virginia into account. The absorption spectra previously measured of the complexes (M=Os, Ir) trans-MCl4Br2— and trans-MCl2 Br4— are interpreted by a M.O. treatment for the symmetry D4h as electron transfer transitions, including a first-order relativistic (spin-orbit coupling) correction. The concept of holohedrized symmetry is sufficiently valid to allow a description of MCl5Br— and MClBr5— as if they were tetragonal with centre of inversion and ƒac-(or cis-)MCl3Br3— as if they were cubic. It is shown that the ligand-ligand antibonding effects have the same order of magnitude as the moderate difference in optical electronegativity between Cl- and Br-.


Author(s):  
Yu.P. Paltsev ◽  
◽  
L.V. Pokhodzey

Annotation. The widespread introduction of laser products in various fields of science, technology and medicine, as well as the possibility of serious damage to the organ of vision and skin during their operation, put forward new and increasingly complex tasks for laser hygiene. An analysis of the hygienic normative and methodological documents currently in force on the territory of the Russian Federation showed that they cannot fully ensure laser safety. Differences in the approaches to the hygienic standardization of laser radiation (LR), adopted in the Russian Federation and the USA and the European Union, have been established. The LR hygienic standards in GOST R IEC 60825-1-2013 are practically identical to foreign IEC 60825 standards, that is, in most spectral ranges they exceed the MPL by an order of magnitude or more (SanPiN 1.2.3685-21). The necessity of correcting the hygienic standards of LR, harmonizing the classification of lasers according to the degree of hazard, and developing effective means of control and protection was revealed. Draft documents have been developed: "Hygienic standards for laser radiation" and "Sanitary and epidemiological requirements for working conditions during the operation of laser products", the introduction of which into the practice of sanitary and epidemiological supervision will ensure the preservation of the health of workers. Key words: lasers, correction of hygienic standards, classification, methods and means of control and protection, laser safety.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 465 ◽  
Author(s):  
Krzysztof Marcinek ◽  
Witold A. Pleskacz

This work presents the results of research toward designing an instruction set extension dedicated to Global Navigation Satellite System (GNSS) baseband processing. The paper describes the state-of-the-art techniques of GNSS receiver implementation. Their advantages and disadvantages are discussed. Against this background, a new versatile instruction set extension for GNSS baseband processing is presented. The authors introduce improved mechanisms for instruction set generation focused on multi-channel processing. The analytical approach used by the authors leads to the introduction of a GNSS-instruction set extension (ISE) for GNSS baseband processing. The developed GNSS-ISE is simulated extensively using PC software and field-programmable gate array (FPGA) emulation. Finally, the developed GNSS-ISE is incorporated into the first-in-the-world, according to the authors’ best knowledge, integrated, multi-frequency, and multi-constellation microcontroller with embedded flash memory. Additionally, this microcontroller may serve as an application processor, which is a unique feature. The presented results show the feasibility of implementing the GNSS-ISE into an embedded microprocessor system and its capability of performing baseband processing. The developed GNSS-ISE can be implemented in a wide range of applications including smart IoT (internet of things) devices or remote sensors, fostering the adaptation of multi-frequency and multi-constellation GNSS receivers to the low-cost consumer mass-market.


Author(s):  
Gabriel H. Eisenkraemer ◽  
Fernando G. Moraes ◽  
Leonardo L. de Oliveira ◽  
Everton Carara

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 180 ◽  
Author(s):  
Javier Acevedo ◽  
Robert Scheffel ◽  
Simon Wunderlich ◽  
Mattis Hasler ◽  
Sreekrishna Pandi ◽  
...  

Random linear network coding (RLNC) can greatly aid data transmission in lossy wireless networks. However, RLNC requires computationally complex matrix multiplications and inversions in finite fields (Galois fields). These computations are highly demanding for energy-constrained mobile devices. The presented case study evaluates hardware acceleration strategies for RLNC in the context of the Tensilica Xtensa LX5 processor with the tensilica instruction set extension (TIE). More specifically, we develop TIEs for multiply-accumulate (MAC) operations for accelerating matrix multiplications in Galois fields, single instruction multiple data (SIMD) instructions operating on consecutive memory locations, as well as the flexible-length instruction extension (FLIX). We evaluate the number of clock cycles required for RLNC encoding and decoding without and with the MAC, SIMD, and FLIX acceleration strategies. We also evaluate the RLNC encoding and decoding throughput and energy consumption for a range of RLNC generation and code word sizes. We find that for GF ( 2 8 ) and GF ( 2 16 ) RLNC encoding, the SIMD and FLIX acceleration strategies achieve speedups of approximately four hundred fold compared to a benchmark C code implementation without TIE. We also find that the unicore Xtensa LX5 with SIMD has seven to thirty times higher RLNC encoding and decoding throughput than the state-of-the-art ODROID XU3 system-on-a-chip (SoC) operating with a single core; the Xtensa LX5 with FLIX, in turn, increases the throughput by roughly 25% compared to utilizing only SIMD. Furthermore, the Xtensa LX5 with FLIX consumes roughly four orders of magnitude less energy than the ODROID XU3 SoC.


Sign in / Sign up

Export Citation Format

Share Document