scholarly journals Design and validation with finite element analysis of a veterinary application prosthesis for Cervus nippon

Author(s):  
ELIEL EDUARDO MONTIJO-VALENZUELA ◽  
Alan Gustavo Ruiz Navarro ◽  
Abraham Silva Contreras ◽  
Javier Alejandro Ruvalcaba Aranda

This article presents the results of the static, thermal and stress analysis for a prosthesis design with veterinary applications based on a female Cervus nippon as the subject of study, in order to restore the quality of life to those animals that have suffered an amputation and also regain the ability to carry out your activities throughout your life. In the model developed for this article, the aim is to provide an alternative to the rigid prostheses that are currently being used.            

2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


1979 ◽  
Vol 22 (4) ◽  
pp. 0955-0960 ◽  
Author(s):  
Robert J. Gustafson ◽  
David R. Thompson ◽  
Shahab Sokhansanj

2013 ◽  
Vol 419 ◽  
pp. 203-208
Author(s):  
Ying Yu ◽  
Yao Run Peng ◽  
Shi Xin Lan ◽  
Ping Zhou

Wave spring is a key component of multi-disc wet clutch and the response speed and running quality of multi-disc wet clutch is affected by its characteristics. This paper analyses the theoretical calculation of load-deformation relationship of wave spring. The load-deformation relationship of wave spring is obtained by ANSYS10.0 software according to its structural characteristics and actual boundary condition and compared with the calculated results based on different methods and the measured value, and then study the effect of the wave number on the load-deformation relationship of wave spring. The results show that the calculated value of finite element analysis (FEM) is closer to the measured value and the FEM has more advantages on simulation of the working performance of wave spring.


2014 ◽  
Vol 556-562 ◽  
pp. 1096-1099
Author(s):  
Wei Wei Tu ◽  
Han Li

This research is focused on Friction Type Monorail Crane Driving,using Solidworks software to establish three-dimensional model.Based on Ansys finite element analysis was introduced, the intensity and the structure optimization design. Monorail friction drive device is given in the stress analysis of different cross section.According to the result of the figure analyzes the stress of different locations will effect the performance of the drive.Provides a theoretical reference For optimizing the structure of improving driving devices and improving the performance of drive device.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehdi Mostafaiyan ◽  
Farhad Sharif

AbstractQuality of injection molded parts of semi-crystalline polymers has been the subject of intense interest from both analytical and industrial points of view. Crystallinity profile plays an important role in determining mechanical properties of a part and its quality. Therefore it is important to analyze the effect of injection molding parameters on the crystallinity profile of the molded parts. In this study, finite element analysis has been used to solve the equations of mass, momentum, and energy conservation simultaneously with the equation of crystallization kinetics to predict melt front, its solidification and crystallinity profile. The results from our numerical analysis have been compared with the reported experimental results. Furthermore, progress of the crystallization is proposed to be a proper criterion for estimation of the eject time. Finally, the effects of mold and melt temperature on the eject time; part temperature and average degree of crystallinity, for a specific compound are also presented.


Sign in / Sign up

Export Citation Format

Share Document