scholarly journals Research of the Rheological Modification Mechanism of Crumb Rubber-Modified Asphalt Containing Polyamide 6 Additive

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhihua Tan ◽  
Jijing Wang

In the past few decades, the rapid growth of automobile production in China has led to the scrapping of a large number of tires. How to dispose of tires has become a significant challenge. The addition of crushed rubber to asphalt binder not only can improve the performance of asphalt mixtures but also is an effective and environmentally friendly way to recycle scrapped tires. However, rubber asphalt mixtures demand higher production temperatures than conventional asphalt binders due to the higher viscosity of asphalt rubber binder. The main objective of this study is to evaluate the rheological properties of rubber-modified asphalt by adding polyamide 6 and investigate the modification mechanism of crumb rubber-modified asphalt (CRMA) after adding polyamide 6. To this end, the content of waste rubber in the prepared rubber asphalt was 20%. The conventional laboratory rheological tests were employed to evaluate the performance of crumb rubber-modified asphalt after adding polyamide 6. Furthermore, to investigate the interaction mechanism of crumb rubber and asphalt, a series of advanced tools, including the scanning electron microscopy (SEM) test, differential scanning calorimeter (DSC) test, and Fourier transform infrared spectroscopy (FTIR) test, were conducted. From the experimental results obtained, it may be concluded that crumb rubber-modified asphalt with adding polyamide 6 not only improves the engineering properties of the rubber-modified asphalt but also improves the performance of rubber asphalt. From the FTIR and SEM tests, it is concluded that there is no new functional group in the mixing process of crumb rubber and the asphalt, which contributes to the storage stability of asphalt binder and runway.

Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2012 ◽  
Vol 193-194 ◽  
pp. 452-457 ◽  
Author(s):  
Meng Yun Huang ◽  
Jing Hui Liu ◽  
Xi Zhang ◽  
Dan Ni Li

Using the waste crumb rubber modified asphalt to pave the road surface could reduce cost and save energy. However,in order to obtain adequate workability, the mixing temperature and compaction temperature of rubberized asphalt binder and its mixture is much higher than those of conventional asphalt mixtures. Warm Mix Asphalt (WMA) is the name given to certain technologies that reduce the production and placement temperatures of asphalt mixes. One of the main benefits advertised is the increased workability at conventional and lower compaction temperatures with the WMA addition. This paper evaluates whether there are any synergy effects of using warm mix technologies and Asphalt Rubber(AR) hot mixes. This paper summarizes a lab research to evaluate the workability of Asphalt Rubber hot mixes containing warm mix technologies. Both asphalt binder and asphalt mixture were evaluated and compared. The research suggests that combining WMA technology with Asphalt Rubber mixtures is a win-win.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3679
Author(s):  
Juan Xie ◽  
Yongning Zhang ◽  
Yueming Yang ◽  
Yunlong Ma ◽  
Jing Li ◽  
...  

Poor storage stability is a key problem restricting the rapid development and wide application of rubber-modified asphalt binder, and activation of rubber has shown good prospects to solve this problem. In this study, two activation methods, coating by polyamide 6 and grafting by acrylamide, were introduced to treat crumb rubber. Then the activated rubber was added to base asphalt binder to prepare modified asphalt binder. The chemical structure and morphology of rubber powder before and after activation and of asphalt binder before and after modification were characterized by Fourier transformation infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The conventional and rheological properties and storage stability were analyzed to reveal the influence of activation method on the performance of asphalt binder. The results showed that after being activated, the surface of the rubber is loose and rough. A chemical reaction did not occur during activation by polyamide but occurred during activation by acrylamide. The activation of the rubber effectively improved the high- and low-temperature performance, and the softening difference decreased by 79.8%. This is because the interaction between rubber and asphalt binder was enhanced through activation of rubber, and grafting activation had better effect due to the chemical reaction between the basic amide groups of acrylamide and acid groups of asphalt binder.


Author(s):  
Saqib Gulzar ◽  
B. Shane Underwood

Agencies have been increasing their use of polymer modified asphalt binders in recent years to address performance issues and lengthen the useful life of their pavements. When deployed these materials likely experience strain levels exceeding their linear viscoelastic (LVE) limits. The same situation exists in non-polymer modified asphalt binders as well, but the effect may be more pronounced in polymer modified systems because of their bi-phasic nature. In this study, terminally blended crumb rubber (CR-TB) modified asphalt is studied to understand and quantify the nonlinear viscoelastic response under large strains. The CR-TB binders are extensively used in pavements subjected to high vehicular loads and extreme climatic conditions; thereby, their response under large strains becomes more critical. The current standard characterization techniques are based on LVE response using small amplitude oscillatory shear rheology only and do not consider the behavior of binders under large strains. In this study, large amplitude oscillatory shear (LAOS) rheology is used as a framework to more thoroughly investigate the complete response of the CR-TB modified asphalt binder under large strains at 30°C, 40°C, 50°C, and 60°C and at the frequencies of 0.5, 1, and 5 Hz. The LAOS response is analyzed using Fourier-transform rheology and the orthogonal stress decomposition method involving Chebyshev polynomial representation. It is found that nonlinearity manifests greatly in this study material as strain levels increase and frequencies decrease. The relative nonlinearity increases with increasing strain amplitude and is more significant towards lower end of the tested temperature range. The CR-TB binder shows strain-stiffening/softening and shear-thinning/thickening behavior depending upon a specific temperature, strain level, and frequency.


Author(s):  
Ibrahim A. Abdalfattah ◽  
Walaa S. Mogawer ◽  
Kevin D. Stuart

This study addresses the effects of recycled polyethylene (RPE) on the performances of both asphalt binders and asphalt mixtures. Whether using RPE in an asphalt mixture might leach harmful chemicals into rainwater or melted snow was also determined. Two processes, wet and dry, were used to formulate the RPE modified asphalt binders and mixtures. In the wet process, RPE was added to asphalt binder. In the dry process, it was added to heated aggregates. RPE from two sources and PG 64-22 virgin asphalt binders from two sources were used in this study. In conclusion, RPE improved the rutting resistance of the asphalt binders and asphalt mixtures. However, it had adverse effects on their resistance to intermediate-temperature and non-load associated cracking. The dry process could produce a mixture with a higher RPE dosage compared with the wet process using one virgin asphalt binder but not the other; thus, the virgin asphalt binder source was a significant factor for the dry process. Based on an embryotoxicity test, it was found that RPE can be used by the asphalt paving industry without creating any significant environmental risks.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Ji ◽  
Hui Yao ◽  
Di Wang ◽  
Zhi Suo ◽  
Luhou Liu ◽  
...  

The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR) to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS) modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM) model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohd Rosli Mohd Hasan ◽  
Zhanping You ◽  
Mohd Khairul Idham Mohd Satar ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
...  

This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol% and 6 vol% of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE), and combinations of CaCO3 and LLDPE. The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer (RV), multiple stress creep recovery (MSCR) and bending beam rheometer (BBR) tests. Meanwhile, four-point beam fatigue test, the dynamic modulus (E*) test and tensile strength ratio (TSR) test were conducted to assess the engineering properties of asphalt mixtures. Based on the findings, the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance. A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage, except the asphalt binders modified using a combination of CaCO3 and LLDPE. However, the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance. The incorporation of CaCO3 in asphalt mixtures was found beneficial, especially in improving the ability to resist fatigue cracking of asphalt mixture. In contrast, asphalt mixtures show better moisture sensitivity through the addition of LLDPE. The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.


Author(s):  
Salih Kocak ◽  
M. Emin Kutay

Three major methods are used to produce crumb rubber modified asphalt pavement: the dry process (CRDry), the terminal blend process (CRTB), and the wet process (CRWet). Although the CRDry process replaces the portion of fine aggregate in the asphalt mixture with crumb rubber (CR) particles, the CRWet process incorporates CR particles into hot liquid asphalt before it is mixed with aggregates. CRTB is known as a special type of CRWet process in which the CR is blended with asphalt binder at the asphalt terminal. In general, the CRWet process can integrate 15% to 22% CR by weight of the binder. This amount ranges from 10% to 12% in the CRTB process as a result of the limitations associated with transportation and pumping. This study investigated the feasibility of increasing the CR content of CRTB modified asphalt mixtures. The addition to the mixture of about 0.5% CR (by weight of the mix) through the CRDry process doubled the amount of rubber to be found in a conventional CRTB mix. The relative performances of the CRTB and the CRTB+CRDry processes [i.e., crumb rubber hybrid (CRHY)] were investigated with respect to their linear viscoelastic properties, rutting susceptibility, moisture damage, resistance to fatigue, and low temperature cracking. It was shown that it was possible to increase the amount of CR in the mixture through the use of the CRHY method proposed here, without adverse effect on the performance of the mixture.


2019 ◽  
Vol 26 (1) ◽  
pp. 379-387
Author(s):  
Iuri S. Bessa ◽  
Márcia M. Takahashi ◽  
Kamilla L. Vasconcelos ◽  
Liedi L. B. Bernucci

AbstractThe addition of polymers on asphalt binders aims to enhance their performance, especially at high temperatures, which correspond to rutting resistance. The Superpave rutting parameter (|G*|/sinδ) has been considered to be inadequate to characterize the performance of modified materials, therefore the Multiple Stress Creep and Recovery (MSCR) test was developed, providing the parameter non-recoverable compliance (Jnr). This research has the main objective of correlating asphalt binders performance-based characterization with rutting resistance of asphalt mixtures, and presents results obtained for one conventional (50/70 penetration grade) and two modified asphalt binders (2.1% RET and 1.9% RET) regarding their rheological characteristics. With the use of the dynamic shear rheometer (DSR), master curves and MSCR results were obtained for the three binders. In addition, permanent deformation tests were performed on the asphalt mixtures by means of laboratory traffic simulation. The rutting characterization indicated higher permanent deformation resistance for the modified binders for the asphalt binder and the asphalt mixture testing. The main conclusions were that the use of modified binder reduced in approximately 50% the Jnr values and the rut depth; also, the asphalt binders’ characteristics were able to predict the asphalt mixtures rutting resistance.


2019 ◽  
Vol 8 (4) ◽  
pp. 5501-5508

The crumb rubber modifier (CRM) particles release polymeric fractions in the matrix of the asphalt binder, which increase the asphalt binder’s fatigue and rutting resistance. The used motor oil (UMO) compensates the asphalt binder for the low-molecular-weight components lost during the aging processes. Moreover, UMO could increase the asphalt binder’s fluidity and softness. Therefore, modification of the asphalt binder by CRM in combination with UMO could enhance the asphalt binder’s performance. In this paper, the asphalt binder was modified by CRM. Then, the UMO was added to the crumb rubber modified asphalt (CRMA). The neat asphalt, CRMA, and UMO–CRMA binders’ resistance to rutting and fatigue cracking was evaluated. Temperature sweep test was used to evaluate the neat and modified asphalt binders’ resistance to rutting and fatigue cracking by measuring |G*|/sinδ and |G*|.sinδ parameters, respectively. Linear amplitude sweep (LAS) test was used to analyze the neat and modified asphalt binders’ resistance to fatigue cracking by measuring the number of load repetitions to failure (Nf ). It was found that using CRM and UMO enhanced the asphalt binder’s resistance to rutting and fatigue cracking. Therefore, UMO succeeded as a rejuvenator to balance the CRMA binder’s performance. This had occurred by creating a balance between the enhanced properties at high, intermediate, and low temperatures. Interaction temperature plays a dominant role in enhancing the asphalt binder’s performance: the enhancement in rutting and fatigue cracking parameters reached the highest values for CRMA or UMO–CRMA samples interacted at 190°C interaction temperature. At 220°C interaction temperature, these enhancements had decreased due to the devulcanization and depolymerization processes of the polymeric components released in the asphalt binder’s matrix.


Sign in / Sign up

Export Citation Format

Share Document