scholarly journals ZNAČAJ MIKROBIOLOŠKE ISPRAVNOSTI VODE U ZAŠTITI ZDRAVLJA STANOVNIŠTVA

2021 ◽  
Author(s):  
Ljubica Šarčevic - Todosijevic ◽  
Snezana Đorđevic ◽  
Vera Popovic ◽  
Ljubisa Živanovic ◽  
Bojana Petrovic ◽  
...  

In addition to physical and chemical pollution of water, from the aspect of the impact of water on the health of the population, monitoring and prevention of microbiological pollution of water, especially water used for drinking, is extremely important. In this paper, the importance of microbiological safety of water in protecting the health of the population is considered.

Author(s):  
V. M. Baitchorov ◽  
Y. G. Giginyak ◽  
M. D. Moroz ◽  
I. J. Giginyak ◽  
E. V. Korzun

In determining the quality of surface waters and, first of all, rivers, along with physical and chemical pollution, the analysis of the hydrobiological component of river ecosystems is becoming increasingly important. The aim of the work was to assess the ecological quality of the river ecosystems from the impact of wastewater discharge from the cities of Vitebsk, Polotsk and Novopolotsk on the Western Dvina River based on the macrozoobenthos community. The studied river sections are inhabited by rare for Belarus and protected in Europe species of aquatic organisms. A relatively high abundance (from 30 to 80 %) of the group of rheophilic species Plecoptera, Ephemeroptera, and Trichoptera was noted, which represent the three highest priority indicator groups of aquatic organisms. Biotic indices and the water purity class of the r. Western Dvina were determined. In accordance with the EU Water Framework Directive, the water purity class at the studied stations has a good and high value. It is concluded that the negative impact of wastewater from the cities of Vitebsk, Polotsk and Novopolotsk has a very local significance and weakly affects the biota and the ecological quality of the water of the Western Dvina River already at a distance of 18 km. below the discharge of water from the treatment facilities of the Novopolotsk refinery.


2019 ◽  
Author(s):  
Maria L. Leonard ◽  
◽  
Rachel M. Kelk ◽  
Dori J. Farthing

Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Adrien Michez ◽  
Stéphane Broset ◽  
Philippe Lejeune

In the context of global biodiversity loss, wildlife population monitoring is a major challenge. Some innovative techniques such as the use of drones—also called unmanned aerial vehicle/system (UAV/UAS)—offer promising opportunities. The potential of UAS-based wildlife census using high-resolution imagery is now well established for terrestrial mammals or birds that can be seen on images. Nevertheless, the ability of UASs to detect non-conspicuous species, such as small birds below the forest canopy, remains an open question. This issue can be solved with bioacoustics for acoustically active species such as bats and birds. In this context, UASs represent an interesting solution that could be deployed on a larger scale, at lower risk for the operator, and over hard-to-reach locations, such as forest canopies or complex topographies, when compared with traditional protocols (fixed location recorders placed or handled by human operators). In this context, this study proposes a methodological framework to assess the potential of UASs in bioacoustic surveys for birds and bats, using low-cost audible and ultrasound recorders mounted on a low-cost quadcopter UAS (DJI Phantom 3 Pro). The proposed methodological workflow can be straightforwardly replicated in other contexts to test the impact of other UAS bioacoustic recording platforms in relation to the targeted species and the specific UAS design. This protocol allows one to evaluate the sensitivity of UAS approaches through the estimate of the effective detection radius for the different species investigated at several flight heights. The results of this study suggest a strong potential for the bioacoustic monitoring of birds but are more contrasted for bat recordings, mainly due to quadcopter noise (i.e., electronic speed controller (ESC) noise) but also, in a certain manner, to the experimental design (use of a directional speaker with limited call intensity). Technical developments, such as the use of a winch to safely extent the distance between the UAS and the recorder during UAS sound recordings or the development of an innovative platform, such as a plane–blimp hybrid UAS, should make it possible to solve these issues.


Work ◽  
2020 ◽  
Vol 67 (3) ◽  
pp. 557-572
Author(s):  
Said Tkatek ◽  
Amine Belmzoukia ◽  
Said Nafai ◽  
Jaafar Abouchabaka ◽  
Youssef Ibnou-ratib

BACKGROUND: To combat COVID-19, curb the pandemic, and manage containment, governments around the world are turning to data collection and population monitoring for analysis and prediction. The massive data generated through the use of big data and artificial intelligence can play an important role in addressing this unprecedented global health and economic crisis. OBJECTIVES: The objective of this work is to develop an expert system that combines several solutions to combat COVID-19. The main solution is based on a new developed software called General Guide (GG) application. This expert system allows us to explore, monitor, forecast, and optimize the data collected in order to take an efficient decision to ensure the safety of citizens, forecast, and slow down the spread’s rate of COVID-19. It will also facilitate countries’ interventions and optimize resources. Moreover, other solutions can be integrated into this expert system, such as the automatic vehicle and passenger sanitizing system equipped with a thermal and smart High Definition (HD) cameras and multi-purpose drones which offer many services. All of these solutions will facilitate lifting COVID-19 restrictions and minimize the impact of this pandemic. METHODS: The methods used in this expert system will assist in designing and analyzing the model based on big data and artificial intelligence (machine learning). This can enhance countries’ abilities and tools in monitoring, combating, and predicting the spread of COVID-19. RESULTS: The results obtained by this prediction process and the use of the above mentioned solutions will help monitor, predict, generate indicators, and make operational decisions to stop the spread of COVID-19. CONCLUSIONS: This developed expert system can assist in stopping the spread of COVID-19 globally and putting the world back to work.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


2014 ◽  
Vol 70 (a1) ◽  
pp. C81-C81
Author(s):  
H. R. Sharma ◽  
J. A. Smerdon ◽  
K. Nozawa ◽  
K. M. Young ◽  
T. P. Yadav ◽  
...  

We have used quasicrystals as templates for the exploration of new epitaxial phenomena. Several interesting results have been observed in the growth on surfaces of the common Al-based quasicrystals [1]. These include pseudomorphic monolayers, quasiperiodically modulated multilayer structures, and fivefold-twinned islands with magic heights influenced by quantum size effects [1]. Here we present our recent works on the growth of various elements and molecules on a new substrate, icosahedral (i) Ag-In-Yb quasicrystal, which have resulted in various epitaxial phenomena not observed previously. The growth of Pb on the five-fold surface of i-Ag-In-Yb yields a film which possesses quasicrystalline ordering in three-dimension [2]. Using scanning tunneling microscopy (STM) and DFT calculations of adsorption energies, we find that lead atoms occupy the positions of atoms in the rhombic triacontahedral (RTH) cluster, the building block of the substrate, and thus grow in layers with different heights and adsorption energies. The adlayer–adlayer interaction is crucial for stabilizing the epitaxial quasicrystalline structure. We will also present the first example of quasicrystalline molecular layers. Pentacene adsorbs at tenfold-symmetric sites of Yb atoms around surface-bisected RTH clusters, yielding quasicrystalline order [3]. Similarly, C-60 growth on the five-fold surface of i-Al-Cu-Fe at elevated temperature produces quasicrystalline layer, where the growth is mediated by Fe atoms on the substrate surface [3]. The finding of quasicrystalline thin films of single elements and molecules opens an avenue for further investigation of the impact of the aperiodic atomic order over periodic order on the physical and chemical properties of materials.


2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


2012 ◽  
Vol 64 (3) ◽  
pp. 971-980 ◽  
Author(s):  
Ewa Zurawska-Seta ◽  
T. Barczak

European moles are widespread in both cultivated and uncultivated areas in Poland. Their occurrence and distribution in relation to the physical and chemical characteristics of soil has been already studied in previous research. However, there is still an open question about the impact of the structure of anthropogenic habitats produced by agriculture on moles. The main aim of this study is to assess the influence of different kinds of field margins on the presence and spatial distribution of the European mole Talpa europaea L. in farmlands. Methods included the monitoring of six investigative sites in northern Poland. Observations were made during three six-month periods in 2005-2008 of the presence or absence of moles as recognized by recent molehills and surface tunnels. There was a very clear tendency by moles to occupy areas within arable fields close to field boundaries with wide verges containing ruderal and woodland communities with a spacious zone of ecotones. Narrow boundary strips were avoided by moles. In conclusion, the conducted research confirms that field margins have an impact on the presence and spatial distribution of moles within ploughed lands. Our results may be helpful in improving the relation between agricultural development and biodiversity conservation, and the rational use of nature by humankind.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


Sign in / Sign up

Export Citation Format

Share Document