scholarly journals GENERAL CHARACTERIZATION AND IONIZATIONRECOMBINATION PROPERTIES OF ELECTRONEGATIVE ELEMENTS PRESENT IN PLASMA DISCHARGES AT PLASMA CURRENT SWITCH OPERATION. PART I

2021 ◽  
pp. 11-17
Author(s):  
E.I. Skibenko ◽  
V.B. Yuferov ◽  
A.N. Ozerov ◽  
I.V. Buravilov

Based on literary sources, we present here the data on electron affinity values for a variety of negative atomic ions, and also, for some molecules and radicals being of interest for current experimental studies. Besides, the ionization potentials are given for nearly all ionization states of some electronegative elements (C, O, F, Cl). For the said elements, the ionization-recombination parameters and the dependences of the fractional values (ionic fraction) for ionization states and on the electron temperature within the framework of ionization equilibrium are given. A comparison is carried out between the calculated and experimental distributions of the fractions of multicharged C+4 ions versus electron temperature.

2021 ◽  
Vol 1022 ◽  
pp. 80-86
Author(s):  
Mikhail G. Kholodnyak ◽  
Sergey A. Stelmakh ◽  
Evgeniy M. Shcherban ◽  
Mukhuma P. Nazhuev

The paper considers the current state of the mineral raw material base and the construction material market of the Rostov Region. The effect of various factors on the strain-stress behavior of local limestones has been investigated. The scientific and technical literary sources devoted to the processes of rock failure under various loads have been analyzed. The experimental studies have shown that the tested samples of limestone with a high content of cuboidal grains have characteristics comparable to those of the crushed granite stone. It has been concluded that the use of the Rostov Region limestones in the construction industry is competitive and feasible, provided the proper implementation of the engineering measures proposed in their production.


Author(s):  
Shoko Watanabe ◽  
Shigeo Yamauchi ◽  
Kumiko K Nobukawa ◽  
Hiroki Akamatsu

Abstract The results of spectral analysis for the galaxy cluster IGR J17448$-$3232 are presented. The intracluster medium (ICM) in the central region ($r\lt 300^{\prime \prime }$, $320\:$kpc) has a high electron temperature plasma of $kT_{\rm e} \sim 13$–$15\:$keV, and an ionization temperature estimated from an intensity ratio of Fe xxvi Ly$\alpha /$Fe xxv He$\alpha$ lines is lower than the electron temperature, which suggests that the ICM is in the non-ionization equilibrium (NEI) state. The spectrum in the central region can be also fitted with a two-component model: a two-temperature plasma model in a collisional ionization equilibrium (CIE) with temperatures of $7.9\:$keV and $\gt 34\:$keV, or a CIE$+$power-law model with a temperature of $9.4\:$keV and a photon index of 1.1. The two-component models can represent the intensity ratio of Fe xxvi Ly$\alpha /$Fe xxv He$\alpha$ lines. On the other hand, the spectrum in the outer region ($r\gt 300^{\prime \prime }$) can be explained by a single CIE plasma model with a temperature of 5–$8\:$keV. Based on the spectral feature and its circular structure, we propose that the NEI plasma was produced by merging along the line-of-sight direction.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5814
Author(s):  
Ghazanfar Mehdi ◽  
Sara Bonuso ◽  
Maria Grazia De Giorgi

These days, various national and international research organizations are working on the development of low NOx combustors. The present work describes the experimental and numerical characterization of flow dynamics and combustion characteristics in a rectangular burner. A ring-needle type plasma actuator was developed and driven by a high voltage nanosecond pulsed generator under atmospheric conditions. Smoke flow visualizations and Proper Orthogonal Decomposition (POD) were carried out to identify the relevant flow structures. Electrical characterization of the non-reactive flow was carried out to predict the electrical power and the optimum value of the reduced electric field (EN), which is useful for the implementation of a numerical model for the study of plasma-assisted ignition. A detailed plasma kinetic mechanism integrated with all excited species was considered and validated with experimental studies. Numerical modeling of plasma ignition has been performed by coupling ZDPlasKin with CHEMKIN. Energy and power consumption for methane/air plasma actuation is higher than the air plasma actuation. This could be due to the excitation and ionization of methane that required more energy deposition and power. The mole fraction of O atoms and ozone was higher in the air than the methane/air actuation. However, O atoms were produced in a very short time interval of 10−7 to 10−6 s; in contrast, the concentration of ozone was gradually increased with the time interval and the peak was observed around 10−1 s. Plasma discharges on the methane/air mixture also produced radicals that played a key role to enhance the combustion process. It was noticed that the concentration of H species was high among all radicals with a concentration of nearly 10−1. The concentration peak of CH3 and OH was almost the same in the order of 10−2. Finally, the mixture ignition characteristics under different low inlet temperatures were analyzed for both air and methane/air plasma actuation in the presence of different plasma discharges pulses numbers. Results showed that it is possible to reach flame ignition at inlet temperature lower than the minimum required in the absence of plasma actuation, which means ignition is possible in cold flow, which could be essential to address the re-ignition problems of aeroengines at high altitudes. At Ti = 700 K, the ignition was reached only with plasma discharges; ignition time was in the order of 0.01 s for plasma discharges on methane/air, lower than in case of plasma in air, which permitted ignition at 0.018 s. Besides this, in the methane/air case, 12 pulses were required to achieve successful ignition; however, in air, 19 pulses were needed to ignite.


Author(s):  
Elena Alexandrovna Kralkina ◽  
Polina Nekliudova ◽  
Aleksandr Nikonov ◽  
Konstantine Vavilin ◽  
Ilia ZADIRIEV ◽  
...  

Abstract Systematic experimental studies of the electron density and temperature, the efficiency of RF power coupling to the RF inductive discharge plasma have been carried out in the pressure range of helium, neon, argon, and krypton 0.1 – 133 Pa, at an RF generator power of 100 – 500 W and frequencies of 2, 4 and 13.56 MHz. It is shown that the electron density reaches a maximum, and the temperature reaches a minimum in the pressure range 1.33 – 13.3 Pa. Taking into account the presence of a parasitic capacitive coupling between the inductor and the plasma, which forms the capacitive channel of RF power input, makes it possible to conclude that the maximum values of the electron density were observed at the pressure at which the power input through the inductive channel is maximal. At pressures of the order of 0.133 Pa and below, an increase in the electron temperature is observed in the peripheral part of the discharge. Numerical modeling by the PIC method shows that one of the reasons is the formation of a directed azimuthal motion of electrons in the region of the skin layer. As the pressure increases, a transition occurs from the nonlocal to the local electron kinetics, which is reflected in the ratio between the electron temperature in the peripheral and central parts of the discharge.


1990 ◽  
Vol 115 ◽  
pp. 172-175
Author(s):  
K.F. Fischbach ◽  
L.M. Bateman ◽  
C.R. Canizares ◽  
T.H. Markert ◽  
P.J. Saez

AbstractHigh resolution X-ray spectral observations of Puppis A were performed with the FPCS on the Einstein Observatory at three regions of the remnant: the shock front, the bright eastern knot, and the interior. Plasma diagnostics of lines from OVII and OVIII constrain the values of electron temperature, ionization timescale, and hydrogen column density. We compare results of the diagnostics for these three regions. A non-equilibrium analysis of previously published fluxes of oxygen lines shows that the interior has not yet reached ionization equilibrium.


Author(s):  
Michael C. James ◽  
Mattia Cattelan ◽  
Neil A. Fox ◽  
Rui F. Silva ◽  
Ricardo M. Silva ◽  
...  

2009 ◽  
Vol 194 (6) ◽  
pp. 062025
Author(s):  
Michael Lestinsky ◽  
Nigel R Badnell ◽  
Dietrich Bernhard ◽  
Oleksandr Borovyk ◽  
Manfred Grieser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document