scholarly journals Effects of Nanosecond Repetitively Pulsed Discharges Timing for Aeroengines Ignition at Low Temperature Conditions by Needle-Ring Plasma Actuator

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5814
Author(s):  
Ghazanfar Mehdi ◽  
Sara Bonuso ◽  
Maria Grazia De Giorgi

These days, various national and international research organizations are working on the development of low NOx combustors. The present work describes the experimental and numerical characterization of flow dynamics and combustion characteristics in a rectangular burner. A ring-needle type plasma actuator was developed and driven by a high voltage nanosecond pulsed generator under atmospheric conditions. Smoke flow visualizations and Proper Orthogonal Decomposition (POD) were carried out to identify the relevant flow structures. Electrical characterization of the non-reactive flow was carried out to predict the electrical power and the optimum value of the reduced electric field (EN), which is useful for the implementation of a numerical model for the study of plasma-assisted ignition. A detailed plasma kinetic mechanism integrated with all excited species was considered and validated with experimental studies. Numerical modeling of plasma ignition has been performed by coupling ZDPlasKin with CHEMKIN. Energy and power consumption for methane/air plasma actuation is higher than the air plasma actuation. This could be due to the excitation and ionization of methane that required more energy deposition and power. The mole fraction of O atoms and ozone was higher in the air than the methane/air actuation. However, O atoms were produced in a very short time interval of 10−7 to 10−6 s; in contrast, the concentration of ozone was gradually increased with the time interval and the peak was observed around 10−1 s. Plasma discharges on the methane/air mixture also produced radicals that played a key role to enhance the combustion process. It was noticed that the concentration of H species was high among all radicals with a concentration of nearly 10−1. The concentration peak of CH3 and OH was almost the same in the order of 10−2. Finally, the mixture ignition characteristics under different low inlet temperatures were analyzed for both air and methane/air plasma actuation in the presence of different plasma discharges pulses numbers. Results showed that it is possible to reach flame ignition at inlet temperature lower than the minimum required in the absence of plasma actuation, which means ignition is possible in cold flow, which could be essential to address the re-ignition problems of aeroengines at high altitudes. At Ti = 700 K, the ignition was reached only with plasma discharges; ignition time was in the order of 0.01 s for plasma discharges on methane/air, lower than in case of plasma in air, which permitted ignition at 0.018 s. Besides this, in the methane/air case, 12 pulses were required to achieve successful ignition; however, in air, 19 pulses were needed to ignite.

Author(s):  
D.J. Varacalle ◽  
K.W. Couch ◽  
V.S. Budinger

Abstract Experimental studies of the subsonic combustion process have been conducted in order to determine the quality and economics of polyester, epoxy, urethane, and hybrid polyester-epoxy coatings. Thermally sprayed polymer coatings are of interest to several industries for anti-corrosion applications, including the infrastructural, chemical, automotive, and aircraft industries. Classical experiments were conducted, from which a substantial range of thermal processing conditions and their effect on the resultant coating were obtained. The coatings were characterized and evaluated by a number of techniques, including Knoop microhardness tests, optical metallography, image analysis, and bond strength. Characterization of the coatings yielded thickness, bond strength, hardness, and porosity.


2015 ◽  
Vol 9 (1) ◽  
pp. 281-294
Author(s):  
G.L. Palazzo ◽  
P. Martín ◽  
F. Calderón ◽  
V. Roldán ◽  
F. López-Almansa

Buckling-restrained braces are commonly installed in building structures as concentric diagonal or chevron braces to protect the main construction from seismic actions. These elements have shown repeatedly their usefulness for reducing the seismic response, both from theoretical and experimental studies; and a number of practical applications have been reported. However, seismic records with near-fault effects possess special characteristics that might impair the performance of these devices, similarly as what occurs in base isolation; about energy issues, in such records (containing strong velocity pulses) the energy is delivered in a short time interval, thus being difficult to be absorbed. This work presents a numerical study regarding the performance of buckling-restrained braces under three types of seismic records: cortical far-field, subductive far-field and near-field (i.e. containing velocity pulses). The study is carried out on a symmetric 4-story steel moment-resisting unbraced frame that was tested at the E-defense laboratory, Japan; the dynamic response of such unbraced bare frame is numerically simulated, obtaining a satisfactory agreement. The same numerical model is used to describe the 2-D dynamic behavior of the steel frame equipped with buckling-restrained braces. The inputs are three series of ten ground motion records; each of these series belongs to one of the three aforementioned types. The average responses for each of the three types of inputs are compared; the obtained results show that the buckling-restrained braces are able to reduce the dynamic response of the frame and that no significant differences can be observed among the efficiency for far-fault and near- fault records.


Author(s):  
E. Salaün ◽  
F. Frindt ◽  
G. Cabot ◽  
B. Renou ◽  
S. Richard ◽  
...  

Abstract A Lean Premixed injection system (LP) was experimentally investigated at elevated pressure and air inlet temperature, corresponding to engine conditions, i.e. with high swirl number and elevated fresh gases velocities. OH-PLIF, NO-PLIF and kerosene-PLIF laser diagnostics were used to study the flame structure and the NO formation within the primary zone. These experimental studies were complemented with PIV measurements. The acquired data allows the evaluation of the coupling of aerodynamics with the flame structure. Starting from there, the combustion process governing the formation of NO pollutant into the flame was analyzed with high spatial resolution. The Zeldovich pathway has been found to control the NO formation in the inner recirculation zone while the nitrous oxide pathway is found to be important especially in the regions in which the residence time of burnt gases is small. Effect of pressure and FAR also produced significant changes in the NO production. It does appear, however that no universal behavior can be found for the pressure dependence of NO.


2012 ◽  
Vol 11 (9) ◽  
pp. 1555-1560 ◽  
Author(s):  
Ionel Pisa ◽  
Gheorghe Lazaroiu ◽  
Corina Radulescu ◽  
Lucian Mihaescu

Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
T KALAIARASI ◽  
M SENTHILKUMAR ◽  
S SHANMUGAN ◽  
T JARIN ◽  
V CHITHAMBARAM ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2739
Author(s):  
Huizhong Zhu ◽  
Jun Li ◽  
Longjiang Tang ◽  
Maorong Ge ◽  
Aigong Xu

Although ionosphere-free (IF) combination is usually employed in long-range precise positioning, in order to employ the knowledge of the spatiotemporal ionospheric delays variations and avoid the difficulty in choosing the IF combinations in case of triple-frequency data processing, using uncombined observations with proper ionospheric constraints is more beneficial. Yet, determining the appropriate power spectral density (PSD) of ionospheric delays is one of the most important issues in the uncombined processing, as the empirical methods cannot consider the actual ionosphere activities. The ionospheric delays derived from actual dual-frequency phase observations contain not only the real-time ionospheric delays variations, but also the observation noise which could be much larger than ionospheric delays changes over a very short time interval, so that the statistics of the ionospheric delays cannot be retrieved properly. Fortunately, the ionospheric delays variations and the observation noise behave in different ways, i.e., can be represented by random-walk and white noise process, respectively, so that they can be separated statistically. In this paper, we proposed an approach to determine the PSD of ionospheric delays for each satellite in real-time by denoising the ionospheric delay observations. Based on the relationship between the PSD, observation noise and the ionospheric observations, several aspects impacting the PSD calculation are investigated numerically and the optimal values are suggested. The proposed approach with the suggested optimal parameters is applied to the processing of three long-range baselines of 103 km, 175 km and 200 km with triple-frequency BDS data in both static and kinematic mode. The improvement in the first ambiguity fixing time (FAFT), the positioning accuracy and the estimated ionospheric delays are analysed and compared with that using empirical PSD. The results show that the FAFT can be shortened by at least 8% compared with using a unique empirical PSD for all satellites although it is even fine-tuned according to the actual observations and improved by 34% compared with that using PSD derived from ionospheric delay observations without denoising. Finally, the positioning performance of BDS three-frequency observations shows that the averaged FAFT is 226 s and 270 s, and the positioning accuracies after ambiguity fixing are 1 cm, 1 cm and 3 cm in the East, North and Up directions for static and 3 cm, 3 cm and 6 cm for kinematic mode, respectively.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christiane Schön ◽  
Claudia Reule ◽  
Katharina Knaub ◽  
Antje Micka ◽  
Manfred Wilhelm ◽  
...  

Abstract Background The assessment of improvement or maintenance of joint health in healthy subjects is a great challenge. The aim of the study was the evaluation of a joint stress test to assess joint discomfort in subjects with activity-related knee joint discomfort (ArJD). Results Forty-five subjects were recruited to perform the single-leg-step-down (SLSD) test (15 subjects per group). Subjects with ArJD of the knee (age 22–62 years) were compared to healthy subjects (age 24–59 years) with no knee joint discomfort during daily life sporting activity and to subjects with mild-to-moderate osteoarthritis of the knee joint (OA, Kellgren score 2–3, age 42–64 years). The subjects performed the SLSD test with two different protocols: (I) standardization for knee joint discomfort; (II) standardization for load on the knee joint. In addition, range of motion (ROM), reach test, acute pain at rest and after a single-leg squat and knee injury, and osteoarthritis outcome score (KOOS) were assessed. In OA and ArJD subjects, knee joint discomfort could be reproducibly induced in a short time interval of less than 10 min (200 steps). In healthy subjects, no pain was recorded. A clear differentiation between study groups was observed with the SLSD test (maximal step number) as well as KOOS questionnaire, ROM, and reach test. In addition, a moderate to good intra-class correlation was shown for the investigated outcomes. Conclusions These results suggest the SLSD test is a reliable tool for the assessment of knee joint health function in ArJD and OA subjects to study the improvements in their activities. Further, this model can be used as a stress model in intervention studies to study the impact of stress on knee joint health function.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


Sign in / Sign up

Export Citation Format

Share Document