scholarly journals MOVEMENT OF CHARGED PARTICLES IN MAGNETIC AND NONUNIFORM STOCHASTIC ELECTRIC FIELDS

2021 ◽  
pp. 112-117
Author(s):  
N.A. Azarenkov ◽  
A.D. Chibisov ◽  
D.V. Chibisov

The equation of motion of charged plasma particles in a homogeneous magnetic field and in an inhomogeneous stochastic electric field with a characteristic oscillation frequency much lower than the electron cyclotron frequency and much higher than the ion cyclotron frequency is solved. The diffusion motion, as well as the drift of ions and guiding center of electrons, due to the inhomogeneity of the stochastic electric field, is considered. The obtained values of the diffusion coefficient and drift velocity are used in the Fokker-Planck equation to determine the stationary distribution of the plasma density due to the effect of an inhomogeneous stochastic field.

2016 ◽  
Vol 31 (02) ◽  
pp. 1650005 ◽  
Author(s):  
Roberto Martorelli ◽  
Giovanni Montani ◽  
Nakia Carlevaro

We discuss a stochastic model for the behavior of electrons in a magnetically confined plasma having axial symmetry. The aim of the work is to provide an explanation for the density limit observed in the Frascati Tokamak Upgrade (FTU) machine. The dynamical framework deals with an electron embedded in a stationary and uniform magnetic field and affected by an orthogonal random electric field. The behavior of the average plasma profile is determined by the appropriate Fokker–Planck equation associated to the considered model and the disruptive effects of the stochastic electric field are shown. The comparison between the addressed model and the experimental data allows to fix the relevant spatial scale of such a stochastic field. It is found to be of the order of the Tokamak micro-physics scale, i.e. few millimeters. Moreover, it is clarified how the diffusion process outlines a dependence on the magnetic field as [Formula: see text].


1970 ◽  
Vol 4 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Barbara Abraham-Shrauner

Suppression of runaway of electrons in a weak, uniform electric field in a fully ionized Lorentz plasma by crossed magnetic and electric fields is analysed. A uniform, constant magnetic field parallel to a constant or harmonically time varying electric field does not alter runaway from that in the absence of the magnetic field. For crossed, constant fields the passage to runaway or to free motion as described by constant drift motion and spiral motion about the magnetic field is lengthened in time for strong magnetic fields. The new ‘runaway’ time scale is roughly the ratio of the cyclotron frequency to the collision frequency squared for cyclotron frequencies much greater than the collision frequency. All ‘runaway’ time scales may be given approximately by t2E Teff where tE is the characteristic time of the electric field and Teff is the ffective collision time as estimated from the appropriate component of the electrical conductivity.


2005 ◽  
Vol 23 (7) ◽  
pp. 2589-2597 ◽  
Author(s):  
V. M. Vasyliunas

Abstract. Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π)∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/c)J implies a time-varying electric field (displacement current) which acts to change both terms (in order to bring them toward equality); the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe.) On larger scales, the evolution of B (and hence also of ∇×B) is governed by ∇×E, with E determined by plasma dynamics via the generalized Ohm's law; as illustrative simple examples, I discuss the formation of magnetic drift currents in the magnetosphere and of Pedersen and Hall currents in the ionosphere. Keywords. Ionosphere (Electric fields and currents) – Magnetospheric physics (Magnetosphere-ionosphere interactions) – Space plasma physics (Kinetic and MHD theory)


2017 ◽  
Vol 199 ◽  
pp. 159-173 ◽  
Author(s):  
Rodolfo Ostilla-Mónico ◽  
Alpha A. Lee

Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier–Stokes Poisson–Nernst–Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson–Nernst–Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.


It is now more than forty years since Lockyer made the remarkable observation that in the spectra of electric spark discharges in mixtures of nitrogen and oxygen, the nitrogen lines were narrow and the oxygen lines broad when the oxygen was present in excess, and in the same way the oxygen lines were narrow and the nitrogen lines broad when the nitrogen was in excess. Although Lockyer put this discovery to practical use in order to make accurate measurements of the wave-lengths of the lines, it seems to have been relegated since to the numerous phenomena in spectroscopy which defy an explanation. Effects akin to this are by no means uncommon. It has long been known that the widths of spectrum lines from flames containing sodium or lithium are greatly affected by the concentration of these substances in the flame. Lord Rayleigh remarks, in connection with the behaviour of the D lines of sodium in the Bunsen flame, “Is there no distinction in kind between encounters first of two sodium atoms and secondly of one sodium atom and an atom, say, of nitrogen ? The behaviour of soda dames shows that there is. Otherwise it seems impossible to explain the great effect of relatively very small additions of soda in presence of large quantities of other gases. The phenomena suggest that the failure of the least coloured dames to give so high an interference as is calculated from Doppler’s principle may be due to encounters with other gases, but that the rapid falling off when the supply of soda is increased is due to something special. This might be of a quasi­ chemical character, e.g., to temporary associations of atoms, or again to vibrators in close proximity putting one another out of tune.” Since these words were written our knowledge of the circumstances which govern the widths of broadened spectrum lines under certain specified conditions has materially increased. Stark’s suggestion,‡ that the broadening of the lines in the spectra of condensed spark discharges is intimately connected with the resolution of the lines into components by the electric field, has been fully confirmed, and it has been shown that in the case of hydrogen and helium the broadening observed under these conditions can be accounted for satisfactorily and completely by the resolution of the lines by the electric fields of neighbouring charged particles on the radiating atoms. The electrical resolution of the lines of hydrogen and helium has been examined by a number of observers, and reliable data, both qualitative and quantitative, are available; in the case of other elements, though considerable progress has been made, our information is less complete, but it is known that for a given electric field the resolution of the lines of heavier atoms such as sodium is very small in comparison with that of the hydrogen or helium lines. It is difficult, therefore, to account for the behaviour of the lines of sodium and many other lines of heavy elements which broaden easily to an extent which seems quite out of proportion to their electrical resolution.


Author(s):  
William J. B. Oldham Jr.

Self-organization in small systems of particles with simple dynamic laws has been simulated. The purpose of this work was to investigate self-organization in small systems of charged particles under the influence of an electric field where we could follow individual particles. There are positively and negatively charged particles. The intention is to look for pattern formation as the system evolves. Three electric fields and the particle-to-particle interactions were utilized to provide the forces. The three electric fields were a constant field, a ramp field, and an oscillatory field. The final system states for various electric fields are presented. For the two kinds of particles simulated, like particles have a repulsive force, while unlike particles have an attractive force. Initially, the particles are randomly distributed in a two dimensional square bounded region, and then allowed to dynamically interact for a number of iterations. Using the inverse square law force, modified at short distances, most cases resulted in equilibrium with the particles of opposite polarity paired up. Since this was a state of equilibrium no more movement occurred. The results of the experiments are presented in graphical format. The main conclusions are that this model can be used to study small dynamic systems, and that the presence of an external electric field does not significantly modify the final configuration but hastens the development of the equilibrium state.


1995 ◽  
Vol 54 (2) ◽  
pp. 245-258 ◽  
Author(s):  
R. van Nieuwenhove ◽  
V. Petržíka ◽  
J. A. Tataronis

A numerical code that computes stationary radial electric fields E0r induced by ponderomotive forces of radio-frequency waves is developed. The computed value of E0r is typically several hundred volts per centimetre when the wave frequency is 1 % lower or higher than the ion-cyclotron frequency. This value of E0r suggests that the ponderomotively induced electric field would be an effective bias in tokamaks. Numerical data are presented to illustrate the properties of this bias field.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document