scholarly journals The Power of Using Novel Nanopore Sequencing Technology for Diagnosis, Genomic and Pathological Studies of Covid-19

2021 ◽  
Vol 2 (3) ◽  
pp. 4014-4028
Author(s):  
Chenghao Du

The novel coronavirus disease 2019 (COVID‐19), originally identified in December 2019 Wuhan, China, has propagated to worldwide pandemic, causing many cases of death and morbidity. Since the development of COVID-19 vaccines is still under experimental stages without public access, different types of testing and detection ensuring rapid and accurate results are urgently required to prevent delaying isolation of infected patients. The traditional diagnostic and analytical methods of COVID-19 relied heavily on nucleic acid and antibody-antigen methods but are subject to assembly bias, restricted by reading length, showed some false positive/negative results and had a long turnaround time. Hence, three styles of nanopore sequencing techniques as complementary tools for COVID-19 diagnosis and analysis are introduced. The long-read nanopore sequencing technology has been adopted in metagenomic and pathological studies of virosphere including SARS-CoV-2 recently by either metagenomically, directly or indirectly sequencing the viral genomic RNA of SARS-CoV-2 in real-time to detect infected specimens for early isolation and treatment, to investigate the transmission and evolutionary routes of SARS-CoV-2 as well as its pathogenicity and epidemiology. In this article, the Nanopore-Based Metagenomic Sequencing, Direct RNA Nanopore Sequencing (DRS), and Nanopore Targeted Sequencing (NTS) become the main focus of the novel COVID-19 detecting analytical methods in sequencing platforms, which are discussed in comparison with other traditional and popular diagnostic methods. Finally, different types of nanopore sequencing platforms that are developed by Oxford Nanopore Technologies (ONT) due to various purposes and demands in viral genomic research are briefly discussed.

2021 ◽  
Vol 271 ◽  
pp. 04024
Author(s):  
Chenghao Du

The novel coronavirus disease 2019 (COVID‐19), originally identified in December 2019 Wuhan, China, has propagated to worldwide pandemic, causing many cases of death and morbidity. Since the development of COVID-19 vaccines is still under experimental stages without public access, different types of testing and detection ensuring rapid and accurate results are urgently required to prevent delaying isolation of infected patients. The traditional diagnostic and analytical methods of COVID-19 relied heavily on nucleic acid and antibody-antigen methods but are subject to assembly bias, restricted by reading length, showed some false positive/negative results and had a long turnaround time. Hence, three styles of nanopore sequencing techniques as complementary tools for COVID-19 diagnosis and analysis are introduced. The long-read nanopore sequencing technology has been adopted in metagenomic and pathological studies of virosphere including SARS-CoV-2 recently by either metagenomically, directly or indirectly sequencing the viral genomic RNA of SARS-CoV-2 in real-time to detect infected specimens for early isolation and treatment, to investigate the transmission and evolutionary routes of SARS-CoV-2 as well as its pathogenicity and epidemiology. In this article, the Nanopore-Based Metagenomic Sequencing, Direct RNA Nanopore Sequencing (DRS), and Nanopore Targeted Sequencing (NTS) become the main focus of the novel COVID-19 detecting analytical methods in sequencing platforms, which are discussed in comparison with other traditional and popular diagnostic methods. Finally, different types of nanopore sequencing platforms that are developed by Oxford Nanopore Technologies (ONT) due to various purposes and demands in viral genomic research are briefly discussed.


Author(s):  
Maodong Zhang ◽  
Yanyun Huang ◽  
Dale L. Godson ◽  
Champika Fernando ◽  
Trevor W. Alexander ◽  
...  

AbstractHigh throughput sequencing is currently revolutionizing the genomics field and providing new approaches to the detection and characterization of microorganisms. The objective of this study was to assess the detection of influenza D virus (IDV) in bovine respiratory tract samples using two sequencing platforms (MiSeq and Nanopore (GridION)), and species-specific qPCR. An IDV-specific qPCR was performed on 232 samples (116 nasal swabs and 116 tracheal washes) that had been previously subject to virome sequencing using MiSeq. Nanopore sequencing was performed on 19 samples positive for IDV by either MiSeq or qPCR. Nanopore sequence data was analyzed by two bioinformatics methods: What’s In My Pot (WIMP, on the EPI2ME platform), and an in-house developed analysis pipeline. The agreement of IDV detection between qPCR and MiSeq was 82.3%, between qPCR and Nanopore was 57.9% (in-house) and 84.2% (WIMP), and between MiSeq and Nanopore was 89.5% (in-house) and 73.7% (WIMP). IDV was detected by MiSeq in 14 of 17 IDV qPCR-positive samples with Cq (cycle quantification) values below 31, despite multiplexing 50 samples for sequencing. When qPCR was regarded as the gold standard, the sensitivity and specificity of MiSeq sequence detection were 28.3% and 98.9%, respectively. We conclude that both MiSeq and Nanopore sequencing are capable of detecting IDV in clinical specimens with a range of Cq values. Sensitivity may be further improved by optimizing sequence data analysis, improving virus enrichment, or reducing the degree of multiplexing.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 814 ◽  
Author(s):  
Maodong Zhang ◽  
Yanyun Huang ◽  
Dale L. Godson ◽  
Champika Fernando ◽  
Trevor W. Alexander ◽  
...  

High throughput sequencing is currently revolutionizing the genomics field and providing new approaches to the detection and characterization of microorganisms. The objective of this study was to assess the detection of influenza D virus (IDV) in bovine respiratory tract samples using two sequencing platforms (MiSeq and Nanopore (GridION)), and species-specific qPCR. An IDV-specific qPCR was performed on 232 samples (116 nasal swabs and 116 tracheal washes) that had been previously subject to virome sequencing using MiSeq. Nanopore sequencing was performed on 19 samples positive for IDV by either MiSeq or qPCR. Nanopore sequence data was analyzed by two bioinformatics methods: What’s In My Pot (WIMP, on the EPI2ME platform), and an in-house developed analysis pipeline. The agreement of IDV detection between qPCR and MiSeq was 82.3%, between qPCR and Nanopore was 57.9% (in-house) and 84.2% (WIMP), and between MiSeq and Nanopore was 89.5% (in-house) and 73.7% (WIMP). IDV was detected by MiSeq in 14 of 17 IDV qPCR-positive samples with Cq (cycle quantification) values below 31, despite multiplexing 50 samples for sequencing. When qPCR was regarded as the gold standard, the sensitivity and specificity of MiSeq sequence detection were 28.3% and 98.9%, respectively. We conclude that both MiSeq and Nanopore sequencing are capable of detecting IDV in clinical specimens with a range of Cq values. Sensitivity may be further improved by optimizing sequence data analysis, improving virus enrichment, or reducing the degree of multiplexing.


2021 ◽  
Author(s):  
Yelena Chernyavskaya ◽  
Xiaofei Zhang ◽  
Jinze Liu ◽  
Jessica S. Blackburn

Nanopore sequencing technology has revolutionized the field of genome biology with its ability to generate extra-long reads that can resolve regions of the genome that were previously inaccessible to short-read sequencing platforms. Although long-read sequencing has been used to resolve several vertebrate genomes, a nanopore-based zebrafish assembly has not yet been released. Over 50% of the zebrafish genome consists of difficult to map, highly repetitive, low complexity elements that pose inherent problems for short-read sequencers and assemblers. We used nanopore sequencing to improve upon and resolve the issues plaguing the current zebrafish reference assembly (GRCz11). Our long-read assembly improved the current resolution of the reference genome by identifying 1,697 novel insertions and deletions over 1Kb in length and placing 106 previously unlocalized scaffolds. We also discovered additional sites of retrotransposon integration previously unreported in GRCz11 and observed their expression in adult zebrafish under physiologic conditions, implying they have active mobility in the zebrafish genome and contribute to the ever-changing genomic landscape.


2021 ◽  
Author(s):  
Adrian A. Pater ◽  
Michael S. Bosmeny ◽  
Mansi Parasrampuria ◽  
Seth B. Eddington ◽  
Katy N. Ovington ◽  
...  

ABSTRACTIn late 2019, a novel coronavirus began spreading in Wuhan, China, causing a potentially lethal respiratory viral infection. By early 2020, the novel coronavirus, called SARS-CoV-2, had spread globally, causing the COVID-19 pandemic. The infection and mutation rates of SARS-CoV-2 make it amenable to tracking movement and evolution by viral genome sequencing. Efforts to develop effective public health policies, therapeutics, or vaccines to treat or prevent COVID-19 are also expected to benefit from tracking mutations of the SARS-CoV-2 virus. Here we describe a set of comprehensive working protocols, from viral RNA extraction to analysis using online visualization tools, for high throughput sequencing of SARS-CoV-2 viral genomes using a MinION instrument. This set of protocols should serve as a reliable ‘how-to’ reference for generating quality SARS-CoV-2 genome sequences with ARTIC primer sets and next-generation nanopore sequencing technology. In addition, many of the preparation, quality control, and analysis steps will be generally applicable to other sequencing platforms.


2021 ◽  
pp. 1-16
Author(s):  
Anca Butiuc-Keul ◽  
Anca Farkas ◽  
Rahela Carpa ◽  
Dumitrana Iordache

Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (<i>cas</i>)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system&apos;s impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus – SARS-CoV-2; thus, the newest and promising applications are reviewed as well.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1304
Author(s):  
Nicolás Bejerman ◽  
Ralf G. Dietzgen ◽  
Humberto Debat

Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.


2018 ◽  
Vol 20 (4) ◽  
pp. 1542-1559 ◽  
Author(s):  
Damla Senol Cali ◽  
Jeremie S Kim ◽  
Saugata Ghose ◽  
Can Alkan ◽  
Onur Mutlu

Abstract Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast, to overcome the high error rates of the nanopore sequencing technology.


Author(s):  
A. Yu. Bovsunivska A. Yu.

The article is devoted to the study of pragmatic aspects of the use of phraseology in the textual space of Carlos Ruiz Safón’s novel «Prisoner of Heaven». One of the defining features of the individual style of this well-known modern Spanish writer is the metaphoricity and figuration of aristic expression, the saturation of the text with phraseological units that play a significant role in creating a pragmatic charge of the work of art. Along with general linguistic phraseological units, which include commonly-used vocabulary, the author uses dialectal and authorial phraseological units, which is a feature of his individual style. All three designated groups of phraseological units mostly reflect the negative psychophysical and emotional state of the characters. The author uses dialectal, individually-authorial and modified phraseological units, which is a feature of his individual style. It is determined that transformation is one of the most productive and most effective ways to update linguistic means in works of art. Author’s modification of FU leads to a change in the semantics and structure of expression, gives it a more expressive or emotional coloring. Transformed phraseology is limited to individual usage and is subject to the context of the work. Modified FUs in the Zafón’s artistic space acquire certain aesthetic and artistic qualities. Their modification is mainly to create the desired stylistic effect – to achieve emotional or expressive expression, which increases the reader’s interest, focuses on the content, issues of the work, as well as reveals the potential expressive potential of the Spanish language. In the transformed FUs, not just a new meaning is traced, but a combination of the well-known and the occasional. The unique combination of different types of phraseological units in the novel is considered a manifestation of individual style and makes a representation of the individually-authorial linguistic picture of the world more expressive.


Author(s):  
Parisa Dehghani ◽  
Monireh Esameili Rad ◽  
Atefeh Zarepour ◽  
Ponnurengam Malliappan Sivakumar ◽  
Ali Zarrabi

: Diabetes mellitus (DM) is a type of chronic metabolic disease that has affected millions of people worldwide and is known with a defect in the amount of insulin secretion, insulin functions, or both. This deficiency leads to an increase in the amounts of glucose, which could be accompanied by long-term damages to other organs such as eyes, kidneys, heart, and nervous system. Thus, introducing an appropriate approach for diagnosis and treatment of different types of DM is the aim of several researches. By the emergence of nanotechnology and its application in medicine, new approaches were presented for these purposes. The object of this review article is to introduce different types of polymeric nanoparticles (PNPs), as one of the most important classes of nanoparticles, for diabetic management. To achieve this goal, at first, some of the conventional therapeutic and diagnostic methods of DM will be reviewed. Then, different types of PNPs, in two forms of natural and synthetic polymers with different properties, as a new method for DM treatment and diagnosis will be introduced. In the next section, the transport mechanisms of these types of nano-carriers across the epithelium, via paracellular and transcellular pathways will be explained. Finally, the clinical use of PNPs in the treatment and diagnosis of DM will be summarized. Based on the results of this literature review, PNPs could be considered one of the most promising methods for DM management.


Sign in / Sign up

Export Citation Format

Share Document