scholarly journals Performance of a capstone gas turbine based power plant working on high Butane LPG

2021 ◽  
Vol 2 (5) ◽  
pp. 7977-7990
Author(s):  
Carlos Alberto Romero Piedrahita ◽  
Ricardo Acosta Acosta ◽  
Yamid Alberto Carranza Sánchez

This paper presents the operational performance results of a 30 kW microturbine generator (MTGs) fed with high butane content liquefied petroleum gas, while subjected to a test procedure involving steady and transient load conditions. To evaluate the performance, measurements of turbine and generator parameters were gathered from its original unit controller, as load changes were applied. For the stand-alone mode detailed graphs of the test results are presented, showing the transparency and robustness of the turbine-generator set to the used fuel, judging by the quality of the output electric parameters. The results from this performance testing provide good insight into the use of high-butane content liquefied petroleum gas as fuel for the tested microturbine. The continuous use of a fuel would need more tests to establish that the life of the critical components of the microturbine are not hampered from what they are on the baseline fuel. The course of selected performance parameters in the microturbine generator is described in this document. The analysis of test results of the microturbine under steady-state and transient operation have been made. Both in steady state and transient conditions, values of output power, speed fluctuation, emissions, noise levels, and exhaust gas temperatures remained under acceptable levels.

Author(s):  
Ihor S. Diakunchak ◽  
David R. Nevin

The site performance testing of CW251B10 industrial gas turbine engines is described in this paper. A brief description is provided of the test procedure, the special instrumentation used during the test, and the derivation of the test tolerances. The test data analysis method and the associated correction curves and tables are described in some detail. Typical engine site performance test results are presented and compared to the original predicted engine performance.


Author(s):  
Wendy J. Matthews ◽  
Terry Bartel ◽  
Dwaine L. Klarstrom ◽  
Larry R. Walker

HAYNES® alloy HR-120® has been identified as a potential alloy for the manufacture of primary surface recuperators. Primary surface recuperator components have been manufactured from HR-120, and actual microturbine testing is on going. Initial engine test results indicate the formation of a protective oxide scale that is resistant to both steady-state and cyclic operation with no evidence of accelerated attack, and which is likely to meet or exceed the desired 80,000 hour component life.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012073
Author(s):  
Dandan Shi ◽  
Xing Qin ◽  
Hao Qu

Abstract Based on the principle of benefiting the durability of concrete, machined sand is used to configure C40 flow concrete, and the engineering application environment and economy are considered. In this paper, the author through the flow state concrete mix ratio design, give the raw material dosage, concrete mixing, finally combined with the workability measurement method, five groups of concrete mix performance testing. According to the test results, the influence of mineral admixture and water reducing agent on the workability of concrete mixture is studied and analyzed, and the reasonable admixture dosage and water reducing rate of water reducing agent and its admixture dosage are finally given.


2021 ◽  
Vol 15 (4) ◽  
pp. 581-584
Author(s):  
Božo Bujanić ◽  
Matija Košak

The paper presents and describes the procedure of testing the materials that were available for the production of a multifunctional protective helmet. The procedure was carried out at the company Šestan-Busch d.o.o. as part of the EU project for the development and production of a multifunctional protective helmet. The test results showed that carbon fibers polymers as a composite material have the best impact absorption properties which was a key criterion for material selection. Other materials; glass fibers polymers, aramid fibers polymers and combinations in the test procedure showed worse results compared to the selected criterion.


2008 ◽  
Vol 12 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Kapilan Nadar ◽  
Pratap Reddy ◽  
Rao Anjuri

In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME) and gingili oil methyl ester (GOME) were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


Author(s):  
Andi I. Mahyuddin ◽  
Ashok Midha

Abstract The camshaft of a cam-follower mechanism experiences a position-dependent moment due to the force exerted on the cam by the follower, causing the angular speed of the camshaft to fluctuate. In this work, a method to expediently predict the camshaft speed fluctuation is developed. The governing equation of motion is derived assuming that the cam-follower system is an ideal one wherein all members are treated as rigid. An existing closed-form numerical algorithm is used to obtain the steady-state rigid-body dynamic response of a machine system. The solution considers a velocity-dependent moment; specifically, a resisting moment is modeled as a velocity-squared damping. The effects of flywheel size and resisting moment on camshaft speed fluctuation are studied. The results compare favorably with those obtained from transient response using a direct integration scheme. The analytical result also shows excellent agreement with the camshaft speed variation of an experimental cam-follower mechanism. The steady-state rigid-body dynamic response obtained herein also serves as a first approximation to the input camshaft speed variation in the dynamic analysis of flexible cam-follower mechanisms in a subsequent research.


2020 ◽  
Author(s):  
Abdurrahman Coşkun ◽  
Sverre Sandberg ◽  
Ibrahim Unsal ◽  
Coskun Cavusoglu ◽  
Mustafa Serteser ◽  
...  

Abstract Background The concept of personalized medicine has received widespread attention in the last decade. However, personalized medicine depends on correct diagnosis and monitoring of patients, for which personalized reference intervals for laboratory tests may be beneficial. In this study, we propose a simple model to generate personalized reference intervals based on historical, previously analyzed results, and data on analytical and within-subject biological variation. Methods A model using estimates of analytical and within-subject biological variation and previous test results was developed. We modeled the effect of adding an increasing number of measurement results on the estimation of the personal reference interval. We then used laboratory test results from 784 adult patients (>18 years) considered to be in a steady-state condition to calculate personalized reference intervals for 27 commonly requested clinical chemistry and hematology measurands. Results Increasing the number of measurements had little impact on the total variation around the true homeostatic set point and using ≥3 previous measurement results delivered robust personalized reference intervals. The personalized reference intervals of the study participants were different from one another and, as expected, located within the common reference interval. However, in general they made up only a small proportion of the population-based reference interval. Conclusions Our study shows that, if using results from patients in steady state, only a few previous test results and reliable estimates of within-subject biological variation are required to calculate personalized reference intervals. This may be highly valuable for diagnosing patients as well as for follow-up and treatment.


Author(s):  
Li-Qun Chen

The steady-state transverse responses and the stability of an axially accelerating viscoelastic string are investigated. The governing equation is derived from the Eulerian equation of motion of a continuum, which leads to the Mote model for transverse motion. The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string. The method of multiple scales is applied to the two models in the case of principal parametric resonance. Closed-form expressions of the amplitudes and the existence conditions of steady-state periodical responses are presented. The Lyapunov linearized stability theory is employed to demonstrate that the first (second) non-trivial steady-state response is always stable (unstable). Numerical calculations show that the two models are qualitatively the same, but quantitatively different. Numerical results are also presented to highlight the effects of the mean axial speed, the axial-speed fluctuation amplitude, and the viscoelastic parameters.


Sign in / Sign up

Export Citation Format

Share Document