Gas-ionizing shocks in a magnetic field

1967 ◽  
Vol 1 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. D. Cowley

Ionizing shocks for plane flows with the magnetic field lying in the flow plane are considered. The gas is assumed to be electrically conducting downstream, but non-conducting upstream. Shocks whose downstream state has a normal velocity component less than the slow magneto-acoustic-wave speed and whose upstream state is supersonic are found to be non-evolutionary in the face of plane magneto-acoustic disturbances, unless the upstream electric field in a frame of reference where the gas is at rest is arbitrary. Velocity conditions are also determined for shock stability with the electric field not arbitrary.Shock structures are found for the case of large ohmic diffusion, the initial temperature rise and ionization of the gas being caused by a thin transition having the properties of an ordinary gasdynamic shock. For the case where shocks are evolutionary when the upstream electric field is arbitrary, the shock structure requirements only restrict the electric field by limiting the range of possible values. When shocks are evolutionary with the electric field not arbitrary, they can only have a structure for a particular value of the electric field. Limits to the current carried by ionizing shocks and the effects of precursor ionization are discussed qualitatively.

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Tamer Nabil

The effect of thermal radiation on steady hydromagnetic heat transfer by mixed convection flow of a viscous incompressible and electrically conducting fluid past an exponentially stretching continuous sheet is examined. Wall temperature and stretching velocity are assumed to vary according to specific exponential forms. An external strong uniform magnetic field is applied perpendicular to the sheet and the Hall effect is taken into consideration. The resulting governing equations are transformed into a system of nonlinear ordinary differential equations using appropriate transformations and then solved analytically by the homotopy analysis method (HAM). The solution is found to be dependent on six governing parameters including the magnetic field parameterM, Hall parameterm, the buoyancy parameterξ, the radiation parameterR, the parameter of temperature distributiona, and Prandtl number Pr. A systematic study is carried out to illustrate the effects of these major parameters on the velocity and temperature distributions in the boundary layer, the skin-friction coefficients, and the local Nusselt number.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2021 ◽  
Author(s):  
Shuai Yang

Abstract In the past scientific cognition, changes in the magnetic field produce electric field, so when there is current and voltage generation, need to have a change in magnetic flux, However, in the process of studying the nature of magnetization, we found that the microscopic formation of a magnetic field is the directional movement of positive and negative charges, under the guidance of this theory, we use other methods, realize the separation of positive and negative charges, observation of induced current generation, this can be used as another way to generate electricity.


1989 ◽  
Vol 12 (1) ◽  
pp. 159-174
Author(s):  
B. D. Aggarwala ◽  
P. D. Ariel

In this paper, we investigate the flow of a viscous, Incompressible, electrically conducting fluid through a rectangular duct in the presence of a magnetic field, when one of the boundaries perpedicular to the magnetic field is partly conducting and partly Insulating, by a modified Boundary Integral Method.Three problems are considered (i) flow through an infinite channel, (ii) flow through a rectangular duct when the conducting part is symmetrically situated, and (iii) flow through a rectangular duct when the conducting part is arbltrarily positioned.Such problems have been studied before by asymptotic means for large values of M, the Hartmann number. Hoverer, the present modification of the Boundary Integral Method renders the problem computationally efficient and provides a reliable numerical solution for all values of M. For large M, our coputation time decreases significantly.


2011 ◽  
Vol 25 (19) ◽  
pp. 2533-2542
Author(s):  
T. HAYAT ◽  
S. N. NEOSSI NGUETCHUE ◽  
F. M. MAHOMED

This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.


2017 ◽  
Vol 83 (1) ◽  
Author(s):  
Amnon Fruchtman

Penetration of a magnetic field into plasma that is faster than resistive diffusion can be induced by the Hall electric field in a non-uniform plasma. This mechanism explained successfully the measured velocity of the magnetic field penetration into pulsed plasmas. Major related issues have not yet been resolved. Such is the theoretically predicted, but so far not verified experimentally, high magnetic energy dissipation, as well as the correlation between the directions of the density gradient and of the field penetration.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Kouichi Hirotani

When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03–0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich–Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (IC) process, spending a portion of the extracted hole’s rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.


1970 ◽  
Vol 25 (5) ◽  
pp. 608-611
Author(s):  
P. Zimmermann

Observing the change of the Hanle effect under the influence of a homogeneous electric field E the Stark effect of the (5p1/25d5/2)j=2-state in Sn I was studied. Due to the tensorial part β Jz2E2 in the Hamiltonian of the second order Stark effect the signal of the zero field crossing (M ∓ 2, M′ = 0 β ≷ 0 ) is shifted to the magnetic field H with gJμBH=2 | β | E2. From these shifts for different electric field strengths the value of the Stark parameter|β| = 0.21(2) MHz/(kV/cm)2 · gJ/1.13was deduced. A theoretical value of ß using Coulomb wave functions is discussed.


Sign in / Sign up

Export Citation Format

Share Document