Synthesis of Biodiesel by Transesterification Reaction from Jatropha Curcas Lineu Oil Seed (“Mpuluka”) Collected in City of Uíge, Angola

Author(s):  
Manuel Albano kanga ◽  
João Mamputu ◽  
Guilherme João Pedro

In this work, it was made a study of biodiesel synthesis by transesterification reaction from Jatropha Curcas Lineu Oil (“Mpuluka”) with methanol in the presence of NaOH. First of all a seed treatment and a granulometric study were carried out and it was concluded that the oil content and yield obtained from the extraction do not depend on the particles size of the seed. The Jatropha Curcas oil was obtained by means of a Soxhlet extraction system, using n -hexane. The oil content obtained was 45,32% and its yield was 90,88%. The physicochemical properties analysis of the oil indicates a high acidity index. For this, the synthesis of biodiesel was carried out using two steps: pre-treatment of crude oil before transesterification reaction and the esterification of crude oil followed by transesterification. The best yield in biodiesel (≈60%) was obtained with the molar ratio (oil/alcohol):1/6. The biodiesel obtained falls within admissible limit values of the international quality standards defined by ASTM_D and EN / ISO. In this work, it was made a study of biodiesel synthesis by transesterification reaction from Jatropha Curcas Lineu Oil (“Mpuluka”) with methanol in the presence of NaOH. First of all a seed treatment and a granulometric study were carried out and it was concluded that the oil content and yield obtained from the extraction do not depend on the particles size of the seed. The Jatropha Curcas oil was obtained by means of a Soxhlet extraction system, using n -hexane. The oil content obtained was 45,32% and its yield was 90,88%. The physicochemical properties analysis of the oil indicates a high acidity index. For this, the synthesis of biodiesel was carried out using two steps: pre-treatment of crude oil before transesterification reaction and the esterification of crude oil followed by transesterification. The best yield in biodiesel (≈60%) was obtained with the molar ratio (oil/alcohol):1/6. The biodiesel obtained falls within admissible limit values of the international quality standards defined by ASTM_D and EN / ISO.

2015 ◽  
Vol 77 (1) ◽  
Author(s):  
M. Shahrir M. Zahari ◽  
S. B. Ismail ◽  
Mohd Zamri Ibrahim ◽  
Su Shiung Lam ◽  
Ramli Mat

This study focuses on the prospect of Jatropha Curcas seed residual from the ultrasonic in-situ process which is used as a biofuel raw material especially for producing bioethanol. Reactive extraction process coupled with ultrasonic system were used for simultaneous oil extraction and transesterification of Jatropha Curcas seed. Using ethanol as the solvent, alkaline catalyst (sodium hydroxide) and with the aid of ultrasonic device, about 50% oil from the initial seeds was extracted, which is equivalent to Soxhlet extraction performance. The seeds were being chemically and physically characterized with ultimate analyses, with SEM and XRD as potential bioethanol raw material. SEM and XRD profile exhibited loosen compounds in the ultrasonicated residues and provided a better accessible and easier degradable fiber for assisting bioethanol production process compared to the initial seeds. The positive effects of the ultrasonic reactive extraction for Jatropha Curcas seed pre-treatment is beneficial towards bioethanol production and could further be used as a solvent in the latter process.


2020 ◽  
Vol 9 (1) ◽  
pp. 1-11
Author(s):  
Agus Haryanto ◽  
Amieria Citra Gita ◽  
Tri Wahyu Saputra ◽  
Mareli Telaumbanua

This research aims to study the first-order kinetics of biodiesel production from used frying oil (UFO) through transesterification with methanol. Used frying oil was collected from fried peddlers around the campus of the University of Lampung. Technical grade methanol and NaOH catalyst were purchased from a local chemical supplier. The experiment was carried out with 100 ml of UFO at various combinations of oil to methanol molar ratio (1:4, 1:5, and 1:6), reaction temperatures(30 to 55oC, the ramping temperature of 5o C), and reaction time of 0.25 to 10 minutes. First-order kinetic was employed using 126 data pairs (87.5%). The acquired kinetic model was validated using 18 data sets (12.5%) observed at a reaction time of eight min. Results show that biodiesel yield was increased with reaction time, its molar ratio, and temperature. The maximum return of 78.44% was achieved at 55oC and molar ratio of 1:6. The kinetic analysis obtains the reaction rate constant (k) in the range of 0.045 to 0.130. The value of k increases with the reaction temperature and molar ratio. The analysis also reveals the average activation energy (Ea) of the UFO transesterification reaction with methanol and NaOH catalyst to be 21.59 kJ/mol. First-order kinetic is suitable to predict biodiesel yield from UFO because of low %RMSE (3.39%) and high R2 (0.8454


Author(s):  
Muh. Irwan ◽  
Hamdani Saidi ◽  
M. A. Rachman ◽  
Ramli Ramli ◽  
Marlinda Marlinda

The biodiesel synthesis through alcoholysis process of triglyceride from Jatropha curcas using different type of alcohol, such as: methanol, ethanol, isopropyl alcohol and tert-butanol, was conducted in the presence of potassium hydroxide (KOH) as catalyst under 35 kHz frequency ultrasound irradiation. The optimum conditions, such as: alcohol to jatropha oil molar ratio, concentration of catalyst, reaction temperature, and reaction time, were found  to be 7:1 of alcohol to jatropha oil molar ratio, 0.5 % of KOH, temperature of reaction at 35 0C, within the reaction times of 15 minutes. The results obtained for the different types of alcohol were 62.77 %, 57.93 %, 51.64 %, and 46.77 % for methanol, ethanol, isopropyl alcohol, and tert-butanol, respectively. Copyright © 2017 BCREC Group. All rights reservedReceived: 11st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Irwan, M., Saidi, H., Rachman, M.A., Ramli, R., Marlinda, M. (2017). Rapid Alcoholysis of Jatropha Curcas Oil for Biodiesel Production Using Ultrasound Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 306-311 (doi:10.9767/bcrec.12.3.801.306-311) 


2018 ◽  
Vol 7 (2) ◽  
pp. 136-141
Author(s):  
Nuni Widiarti ◽  
Ismi Arinal Haq ◽  
F. Widhi Mahatmanti ◽  
Harjito Harjito ◽  
Cepi Kurniawan ◽  
...  

CaO is a very good catalyst for oil transesterification reactions into biodiesel, but requires a reaction time of 2 hours to obtain equilibrium. The time of CaO catalysis reaction can be accelerated by modifying the CaO catalyst with SrO. Synthesis biodiesel of waste cooking oil has been successfully conducted by transesterification reaction that used batch reactor assisted by CaO.SrO catalyst. The aim of this study is to determine the characteristics and catalytic activity of catalyst in the transesterification reaction. Catalysts have been successfully synthesized by coprecipitation method with oil to methanol molar ratio of 1:1, and its calcined at 800oC for 3 hours. Catalyst was characterized by XRD to determine the crystallinity. The smaller catalyst crystallinity obtained as the decline in intensity and shifts diffraction angles of CaO modified SrO catalyst. Surface area of catalyst characterized by SAA, that allow surface area between CaO modified SrO by 10.217 m2/g. Transesterification reaction performed on variation time (30, 60, 90, 120, 150 minutes), and the catalysts amount (1, 2, 4, 6, 8% w/v). The optimum condition of catalytic activity in reaction for 2 hours and the catalyst amount is 1% w/v of reactants that produce yield of biodiesel is 96.4%.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3703
Author(s):  
Ming-Chien Hsiao ◽  
Wei-Ting Lin ◽  
Wei-Cheng Chiu ◽  
Shuhn-Shyurng Hou

In this study, ultrasound was used to accelerate two-stage (esterification–transesterification) catalytic synthesis of biodiesel from used cooking oil, which originally had a high acid value (4.35 mg KOH/g). In the first stage, acid-catalyzed esterification reaction conditions were developed with a 9:1 methanol/oil molar ratio, sulfuric acid dosage at 2 wt %, and a reaction temperature of 60 °C. Under ultrasound irradiation for 40 min, the acid value was effectively decreased from 4.35 to 1.67 mg KOH/g, which was decreased to a sufficient level (<2 mg KOH/g) to avoid the saponification problem for the subsequent transesterification reaction. In the following stage, base-catalyzed transesterification reactions were carried out with a 12:1 methanol/oil molar ratio, a sodium hydroxide dosage of 1 wt %, and a reaction temperature of 65 °C. Under ultrasound-assisted transesterification for 40 min, the conversion rate of biodiesel reached 97.05%, which met the requirement of EN 14214 standard, i.e., 96.5% minimum. In order to evaluate and explore the improvement of the ultrasound-assisted two-stage (esterification–transesterification) process in shortening the reaction time, additional two-stage biodiesel synthesis experiments using the traditional mechanical stirring method under the optimal conditions were further carried out in this study. It was found that, under the same optimal conditions, using the ultrasound-assisted two-stage process, the total reaction time was significantly reduced to only 80 min, which was much shorter than the total time required by the conventional method of 140 min. It is worth noting that compared with the traditional method without ultrasound, the intensification of the ultrasound-assisted two-stage process significantly shortened the total time from 140 min to 80 min, which is a reduction of 42.9%. It was concluded that the ultrasound-assisted two-stage (esterification–transesterification) catalytic process is an effective and time-saving method for synthesizing biodiesel from used cooking oil with a high acid value.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1309
Author(s):  
Muhammad Heikal Ismail ◽  
Hii Ching Lik ◽  
Winny Routray ◽  
Meng Wai Woo

Fresh rice noodle was usually coated in a large amount of oil to avoid stickiness and extend the shelf life. Pre-treatment has been applied to reduce the quantity of oil in rice noodle. In this research, the pre-treatment and temperature effect on the rice noodle quality subjected to hot air drying, heat pump drying, and freeze drying was investigated. Texture, color, oil content, and starch gelatinization of the dried noodle was further evaluated. Results revealed that there were significant differences (p < 0.05%) in texture, color, oil content, and starch gelatinization in rice noodle subjected to pre-treatment. Furthermore, the texture, color, oil content, and starch gelatinization demonstrated a significant difference (p < 0.05%) in freeze drying rather than hot air drying and heat pump drying. The findings indicate that the qualitative features of the dehydrated noodle are synergistic to pretreatment and drying temperature. Despite superior quality shown by freeze drying, the hierarchical scoring has proven that rice noodle undergoing hot air drying at 30 °C to produce comparable quality attributes. The hierarchical scoring can be a useful tool in quality determination for the food industry.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hsiao-Ching Chen ◽  
Hen-Yi Ju ◽  
Tsung-Ta Wu ◽  
Yung-Chuan Liu ◽  
Chih-Chen Lee ◽  
...  

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in atert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were83.31±2.07% and82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Teymor Tavakoli Hashjin ◽  
Barat Ghobadian ◽  
Gholamhasan Najafi ◽  
Stefano Mantegna ◽  
...  

AbstractThis work investigates the effect of simultaneous ultrasound-microwave irradiation on palm oil transesterification and uncovers optimal operating conditions. Response surface methodology (RSM) has been used to analyze the influence of reaction conditions, including methanol/palm oil molar ratio, catalyst concentration, reaction temperature and irradiation time on biodiesel yield. RSM analyses indicate 136 s and 129 s as the optimal sonication and microwave irradiation times, respectively. Optimized parameters for full conversion (97.53%) are 1.09% catalyst concentration and a 7:3.1 methanol/oil molar ratio at 58.4°C. Simultaneous ultrasound-microwave irradiation dramatically accelerates the palm oil transesterification reaction. Pure biodiesel was obtained after only 2.2 min while the conventional method requires about 1 h.


Sign in / Sign up

Export Citation Format

Share Document