scholarly journals Comparative analysis of the economic returns to management in single crop, fish, poultry and an integrated farming system in Obudu, Cross River State

2021 ◽  
Vol 1 (2) ◽  
pp. 12-24
Author(s):  
Lawrence Ugbe ◽  
Ukelina Christopher ◽  
Agim Marcel ◽  
Urim Mathias

A four year (2016, 2017, 2018, and 2019) field experiment was conducted to compare the economic returns to investment in single enterprise with integrated farming comprising of rice farm alongside with fish culture and poultry farm using mostly organic waste as feeds. In 2016 a rice farm was cultivated on a piece of land already procured for the experiment, fertilizers, herbicides and pesticides were all applied. At maturity the rice was harvested, processed, bagged in 100kg bags and sold. Economic returns to management were calculated according to the methods of CIMMYT, (1988). In 2017, only fish farm was established, fed and harvested at maturity and sold to consumers. Economic returns to management were also calculated and recorded. In 2018, a poultry farm was established, 200 broilers were reared to maturity and sold, economic returns to management were calculated and recorded. Then in 2019, an integrated farm comprising rice farm, fish farm and poultry farm were all established in the same field. About 70% of the feeds used were organic waste collected mostly from poultry droppings. The silt from the pond was also used as fertilizer for the rice farm, while the rice bran was also fed to the poultry. The output from the farms were harvested and sold, and the economic returns to investment for each farm calculated. The result showed that the returns to investment were significantly (p<0.05) higher in integrated farming system than in the single enterprise farm, due to the low cost of production using low cost inputs in integrated farming compare to the use of high cost synthetic inputs in single enterprise. The paper therefore recommended that farmers should adopt integrated farming system with low cost inputs for higher profit than the single enterprise farming.

2012 ◽  
Vol 48 (3) ◽  
pp. 399-413 ◽  
Author(s):  
SANJEEV KUMAR ◽  
N. SUBASH ◽  
S. SHIVANI ◽  
S. S. SINGH ◽  
A. DEY

SUMMARYFor efficient utilisation of available farm resources and to increase the income per unit of land, seven integrated farming systems were developed and different combinations of crop, animal, fish and bird were evaluated at three locations of Eastern India, viz. Patna, Vaishali and Munger districts, to sustain productivity, profitability, employment generation and nutrient recycling for lowland situations from 2007–2008 to 2009–2010. Among the tested different Integrated Farming System (IFS) models, viz. (i) crop + fish + poultry, (ii) crop + fish + duck, (iii) crop + fish + goat, (iv) crop + fish + duck + goat, (v) crop + fish + cattle, (vi) crop + fish + mushroom and (vii) crop alone, crop + fish + cattle model recorded higher rice (Oryza sativa L.) grain equivalent yield (RGEY) (18.76 t/ha) than any other combinations, but in terms of economics, crop + fish + duck + goat model supersedes over all other combinations. The highest average net returns (USD 2655/yr) were recorded from crop + fish + duck + goat system over all other systems tested here. Higher average employment of 656 man-days/year were also recorded from crop + fish + duck + goat system because of better involvement of farm family labours throughout the year. Based on a sustainability index (SI) derived from different models, crop + fish + duck + goat system was found superior with a maximum sustainability for net returns (73.1%), apart from the addition of appreciable quantity of nitrogen, phosphorus and potassium into the system in the form of recycled animal and plant wastes. The wastes/by-products of crop/animals were used as input for another component to increase the nutrient efficiency at the farm level through nutrient recycling. Results on integration of different components with crop depending upon suitability and preferences were found encouraging, and to enhance the productivity, economic returns, generating employment for farm families and maintaining soil health of the farm, the crop + fish + duck + goat combination could be adopted in the eastern part of India than cultivating the crop alone on the same piece of land under irrigated condition. Addition of organic residues in the form of animal and plant wastes could also help in improving the soil-health and thereby productivity over a longer period of time with lesser environmental hazards. The livelihoods of small and marginal farmers could be improved by their adoption of IFS technologies on a larger scale, as they provide scope to employ more labour year-round.


2021 ◽  
pp. 104-110
Author(s):  
B. Sudha ◽  
Jacob John ◽  
A. V. Meera ◽  
A. Sajeena ◽  
D. Jacob ◽  
...  

A coconut-based integrated farming system (IFS) model suited for lowlands was developed at the Integrated Farming System Research Station (IFSRS), Karamana, Kerala State, India, under Kerala Agricultural University. The area of the model was decided as 0.2 ha, matching the average per capita land availability of a marginal farmer in the State. Apart from the major crop coconut, intercrops, such as vegetables, fruit crops, spices, fodder and tuber crops were included in the model. The allied enterprises integrated were livestock, azolla, and agroforestry. Tree components of the model comprised of teak, jack, breadfruit, garcinia and mango. Research data for five years revealed that the model generated food products above the requirement of a four-member family, and the surplus production could contribute to farmer’s income. The productivity under the IFS model was enhanced ten-folds compared to that under the sole crop of coconut for the same area. Plant nutrients were generated within the farm through organic recycling, which contributed to the substantial saving of chemical fertilizers. The system was found climate-smart because of reduced use of chemical fertilizers and net negative emission of greenhouse gases mostly achieved through agroforestry. This IFS model could also ensure considerable employment generation. The model could be adopted by farmers of lowland tracts of Kerala having similar agro-climatic features for better economic returns and environmental benefits.


Author(s):  
Gonzalo Flores-Morales ◽  
Mónica Díaz ◽  
Patricia Arancibia-Avila ◽  
Michelle Muñoz-Carrasco ◽  
Pamela Jara-Zapata ◽  
...  

Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.


Green Farming ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 696
Author(s):  
MEERA A.V. ◽  
JOHN J. ◽  
SUDHA B. ◽  
SAJEENA A. ◽  
JACOB D. ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SANJEEV KUMAR ◽  
SHIVANI . ◽  
S. K. SAMAL ◽  
S. K. DWIVEDI ◽  
MANIBHUSHAN .

Integration of different components viz. livestock, fishery, horticulture, mushroom etc. along with field crops not only enhanced productivity but by-products (waste) of one component act as input for another component through resource recycling within the system. Six integrated farming systems models with suitable combinations of Crop, vegetables, fruit trees, fish, livestock, mushroom etc. were made and evaluated at the experimental farm of ICAR Research Complex for Eastern Region, Patna during 2012-16 for harness maximum income, nutrient recycling and employment. Among six combinations, crop + fish + duck + goat resulted as most profitable combination in terms of productivity (RGEY- 22.2t), net income (Rs. 2,15,900/ha), additional employment (170 days/year) with income sustainability index (ISI) by 90.2. Upon nutrient recycling prepared from different wastes from the system Crop + fish + duck + goat combination added N (56.5 kg), P (39.6 kg) and K (42.7 kg) into the soil and reduced the cost of cultivation by 24 percent and was followed by crop + fish + goat combination. Crops grown under IFS mode with different types of manures produced 31 percent higher yield over conventional rice- wheat system. The contribution of crops towards the system productivity ranged from 36.4 to 56.2 %, while fish ranged from 22.0-33.5 %; for goat 25.4-32.9 %; for poultry 38.7 %; for duck 22.0-29.0 %; for cattle 32.2% and for mushroom 10.3 %.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Author(s):  
Dibyendu Chatterjee ◽  
Rukuosietuo Kuotsu ◽  
Sanjay Kumar Ray ◽  
M. K. Patra ◽  
A. Thirugnanavel ◽  
...  

2005 ◽  
Vol 41 (1) ◽  
pp. 81-92 ◽  
Author(s):  
G. P. BUTLER ◽  
T. BERNET ◽  
K. MANRIQUE

Potatoes are an important cash crop for small-scale producers worldwide. The move away from subsistence to commercialized farming, combined with the rapid growth in demand for processed agricultural products in developing countries, implies that small-scale farmers and researchers alike must begin to respond to these market changes and consider post-harvest treatment as a critical aspect of the potato farming system. This paper presents and assesses a low cost potato-grading machine that was designed explicitly to enable small-scale potato growers to sort tubers by size for supply to commercial processors. The results of ten experiments reveal that the machine achieves an accuracy of sort similar to commercially available graders. The machine, which uses parallel conical rollers, has the capacity to grade different tuber shapes and to adjust sorting classes, making it suitable for locations with high potato diversity. Its relatively low cost suggests that an improved and adapted version of this machine might enhance market integration of small-scale potato producers not only in Peru, but in other developing countries as well.


2012 ◽  
Vol 26 (9) ◽  
pp. 2605-2623 ◽  
Author(s):  
U. K. Behera ◽  
P. Panigrahi ◽  
A. Sarangi

Sign in / Sign up

Export Citation Format

Share Document