scholarly journals The Effects of Egg Windowing on the Viability and Longevity of Gallus gallus Embryos in an Undergraduate Teaching Lab

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Rebekah A. Hobbs ◽  
Jeffrey O. Henderson

The observation and manipulation of chicken embryos in ovo has been useful for understanding the development of vertebrates. However, the viability and longevity of the embryos are severely compromised even by simple manipulations to the egg shell. We have explored experimental protocols that promote the viability of embryos in ovo and ex ovo for use in an undergraduate teaching laboratory setting. Here, we demonstrate that a modified in ovo windowing technique increases survival time over an ex ovo method but with concomitant loss of spatial and temporal examination of chick embryo development.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 932
Author(s):  
Arkadiusz Matuszewski ◽  
Monika Łukasiewicz ◽  
Jan Niemiec ◽  
Maciej Kamaszewski ◽  
Sławomir Jaworski ◽  
...  

The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 388-399 ◽  
Author(s):  
Youli Hu ◽  
Subathra Poopalasundaram ◽  
Anthony Graham ◽  
Pierre-Marc Bouloux

Fibroblast growth factor (FGF) signaling is essential for both olfactory bulb (OB) morphogenesis and the specification, migration, and maturation of the GnRH-secreting neurons. Disruption of FGF signaling contributes to Kallmann syndrome characterized by both anosmia and sexual immaturity. However, several unanswered questions remain as to which specific FGF receptor (FGFR)-1 signaling pathways are necessary for OB and GnRH neuronal development. Here, using pharmacological phosphatidylinositol 3-kinase (PI3K) isoform-specific inhibitors, we demonstrate a central role for the PI3K p110α isoform as a downstream effector of FGFR1 signaling for both GnRH neuronal migration and OB development. We show that signaling via the PI3K p110α isoform is required for GnRH neuronal migration in explant cultures of embryonic day (E) 4 chick olfactory placodes. We also show that in ovo administration of LY294002, a global PI3K inhibitor as well as an inhibitor to the PI3K p110α isoform into the olfactory placode of E3 chick embryo impairs GnRH neuronal migration toward the forebrain. In contrast, in ovo PI3K inhibitor treatment produced no obvious defects on primary olfactory sensory neuron axonal targeting and bundle formation. We also demonstrate that anosmin-1 and FGF2 induced neuronal migration of immortalized human embryonic GnRH neuroblast cells (FNC-B4-hTERT) is mediated by modulating FGFR1 signaling via the PI3K p110α isoform, specifically through phosphorylation of the PI3K downstream effectors, Akt and glycogen synthase kinase-3β. Finally, we show that neurite outgrowth and elongation of OB neurons in E10 chick OB explants are also dependent on the PI3K p110α isoform downstream of FGFR1. This study provides mechanistic insight into the etiology of Kallmann syndrome.


Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 147-168
Author(s):  
Jane Butler ◽  
Peter Cauwenbergs ◽  
Ethel Cosmos

The extent of interaction between brachial muscles and foreign (thoracic) nerves of the chick embryo was determined during an extended period of development in ovo from the perspectives of innervation pattern, function (motility analyses), muscle growth (quantitative analyses of muscle volume) and fibre-type expression (myosin-ATPase profiles). Results indicated that according to all parameters analysed, initially a compatible union existed between the foreign nerves and their muscle targets. During subsequent stages of development, deterioration of the once compatible relationship emerged, until eventually denervation of muscles, i.e. an actual loss of intramuscular nerve branches, was observed. The process of denervation, which proceeded at a differential rate among individual muscles, however was restricted to brachial muscles derived from the premuscle masses of the wing bud. In contrast, brachial muscles of myotomal origin were spared the fate of wing-bud-derived muscles and maintained a successful union with the foreign nerves.


1999 ◽  
Vol 46 (4) ◽  
pp. 911-917
Author(s):  
M Sanecka-Obacz

Protein kinases tightly associated with chick embryo brain ribosomes washed with Triton X-100 and KCl were characterized by their ability to phosphorylate ribosomes and two exogenous substrates, histone IIA and casein. c-AMP-dependent kinase (PKA) and casein kinases (CK1, CK2) were examined in the presence of specific modulators by SDS/PAGE followed by renaturation in gel assay according to Kameshita & Fujisawa (Anal. Biochem. 1989, 183, 139-143). Basing on these data it can be presumed that PKA activity increases, but the levels of CK2 and CK1 decrease during chick embryo development.


Author(s):  
Yoshihiro Miura ◽  
Eric Yeager ◽  
James MacKenzie ◽  
Kestutis Bendinskas

Ribosomes are central to protein synthesis and our understanding of ribosomes has advanced antibiotics research. The proteomic study of ribosomes presented here utilizes a combination of differential centrifugation and matrix assisted laser desorption/ionization – time of flight mass spectrometry (MALDI-TOF MS) to analyze ribosomes from various species in a teaching laboratory setting. Five biologically varied species were used: Escherichia coli (bacteria), Saccharomyces cerevisiae (yeast), Bos taurus (cow), Gallus gallus (chicken), and Oncorhynchus tshawytscha (Chinook salmon). Samples were lysed, ribosomes were isolated via ultracentrifugation using a discontinuous sucrose gradient and the individual protein subunits were separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis. Tryptic digest and MALDI-TOF MS were then conducted on fifteen bands excised from the gel, and the mass spectra of both the whole protein sample and peptides were analyzed. Five out of these fifteen bands were positively identified as various ribosomal proteins, with two uncertain identifications. Additionally, three of the five positively identified proteins that travelled the same distance on the gel were determined to be orthologous. Finally, a class of 14 Biochemistry II students utilized these protocols, identified 3 ribosomal proteins and provided their evaluations of the ultracentrifugation-proteomics teaching laboratory. Key Words: Proteomics, MALDI-TOF MS, ultracentrifugation, ribosomes, teaching laboratory


1988 ◽  
Vol 250 (1) ◽  
pp. 189-196 ◽  
Author(s):  
B C Lincoln ◽  
J F Healey ◽  
H L Bonkovsky

We studied drug- and metal-mediated increases in activity of haem oxygenase, the rate-controlling enzyme for haem breakdown, in chick-embryo hepatocytes in ovo and in primary culture. Phenobarbitone and phenobarbitone-like drugs (glutethimide, mephenytoin), which are known to increase concentrations of an isoform of cytochrome P-450 in chick-embryo hepatocytes, were found to increase activities of haem oxygenase as well. In contrast, 20-methylcholanthrene, which increases the concentration of a different isoform of cytochrome P-450, had no effect on activity of haem oxygenase. Inhibitors of haem synthesis, 4,6-dioxoheptanoic acid or desferrioxamine, prevented drug-mediated induction of both cytochrome P-450 and haem oxygenase in embryo hepatocytes in ovo or in culture. Addition of haem restored induction of both enzymes. These results are interpreted to indicate that phenobarbitone and its congeners induce haem oxygenase by increasing hepatic haem formation. In contrast, increases in haem oxygenase activity by metals such as cobalt, cadmium and iron were not dependent on increased haem synthesis and were not inhibited by 4,6-dioxoheptanoic acid. We conclude that (1) induction of hepatic haem oxygenase activity by phenobarbitone-type drugs is due to increased haem formation, and (2) induction of haem oxygenase by drugs and metals occurs by different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document